Explanation:
Mass of fructose = 33.56 g
Mass of water = 18.88 g
Total mass of the solution = Mass of fructose + Mass of water = M
M = 33.56 g + 18.88 g =52.44 g
Volume of the solution = V = 40.00 mL
Density =
a) Density of the solution:

b) Molar mass of fructose = 180.16 g/mol
Moles of fructose = 
Molar mass of water = 18.02 g/mol
Moles of water= 
Mole fraction of fructose in this solution:


Mole fraction of water = 
c) Average molar mass of of the solution:
=

d) Mass of 1 mole of solution = 42.50 g/mol
Density of the solution = 1.311 g/mL
d) Specific molar volume of the solution:


Answer:
1.33 Å
Explanation:
Given that the edge length , a of the KCl which forms the FCC lattice = 6.28 Å
Also,
For the FCC lattice in which the anion-cation contact along the cell edge , the ratio of the radius of the cation to that of anion is 0.731.
Thus,
.................1
Also, the sum of the radius of the cation and the anion in FCC is equal to half of the edge length.
Thus,
...................2
Given that:

To find,

Using 1 and 2 , we get:

<u>Size of the potassium ion = 1.33 Å</u>
<u>Answer:</u> The equilibrium concentration of water is 0.597 M
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The concentration of pure solids and pure liquids are taken as 1 in the expression.
For the given chemical reaction:

The expression of
for above equation is:
![K_c=\frac{[H_2O]^2}{[H_2S]^2\times [O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2S%5D%5E2%5Ctimes%20%5BO_2%5D%7D)
We are given:
![[H_2S]_{eq}=0.671M](https://tex.z-dn.net/?f=%5BH_2S%5D_%7Beq%7D%3D0.671M)
![[O_2]_{eq}=0.587M](https://tex.z-dn.net/?f=%5BO_2%5D_%7Beq%7D%3D0.587M)

Putting values in above expression, we get:
![1.35=\frac{[H_2O]^2}{(0.671)^2\times 0.587}](https://tex.z-dn.net/?f=1.35%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%280.671%29%5E2%5Ctimes%200.587%7D)
![[H_2O]=\sqrt{(1.35\times 0.671\times 0.671\times 0.587)}=0.597M](https://tex.z-dn.net/?f=%5BH_2O%5D%3D%5Csqrt%7B%281.35%5Ctimes%200.671%5Ctimes%200.671%5Ctimes%200.587%29%7D%3D0.597M)
Hence, the equilibrium concentration of water is 0.597 M
Answer:
false
Explanation:
the energy causes the bonds to become looser