1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amiraneli [1.4K]
3 years ago
15

If a dog has the mass of 14.5kg and accelerates at a rate of 8m/sec2 →, If he runs into you what is the force he hits you with?

Physics
1 answer:
pashok25 [27]3 years ago
7 0

Answer:

F=ma

m=14.5kg

a=8m/s^2

F=14.5×8

F=116N

Explanation:

PLS MARK BRAINLIEST

You might be interested in
The new deal helped fix the economy but was not the perfect solution​
Roman55 [17]

you will find your answer through this link

https://www.britannica.com/event/New-Deal

5 0
3 years ago
Imagine using brainly LOL COULDNT BE ME XD
Step2247 [10]

Answer:

LOL! couldnt be me either bestieeeee

7 0
3 years ago
Read 2 more answers
This picture shows human red blood cells. The human body contains about 5 million red blood cells per cubic milliliter. This mea
Elanso [62]

✧・゚: *✧・゚:*    *:・゚✧*:・゚✧

                  Hello!

✧・゚: *✧・゚:*    *:・゚✧*:・゚✧

❖ The correct answer choice is B) is multicellular. When something is multicellular, it consists of two or more cells. When something is unicellular, it consists of only one cell and in this case we have 5 million red blood cells so that wouldn't make sense.

~ ʜᴏᴘᴇ ᴛʜɪꜱ ʜᴇʟᴘꜱ! :) ♡

~ ᴄʟᴏᴜᴛᴀɴꜱᴡᴇʀꜱ

4 0
3 years ago
A weightlifter lifts a 250-kg mass 0.5 meters above his head, how much PEg does the mass have (Note: g=9.8 m/s2)? Round your ans
morpeh [17]

Answer:

1225 J

Explanation:

The Gravitational potential energy (PEG) gained by a mass lifted above the ground is given by

PE=mgh

where

m is the mass

g = 9.8 m/s^2 is the acceleration due to gravity

h is the height at which the object has been lifted

In this problem, we have

m = 250 kg

h = 0.5 m

So, the PE of the object is

PE=(250 kg)(9.8 m/s^2)(0.5 m)=1225 J

6 0
3 years ago
Read 2 more answers
A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and
Nastasia [14]

(a) See figure in attachment (please note that the image should be rotated by 90 degrees clockwise)

There are only two forces acting on the balloon, if we neglect air resistance:

- The weight of the balloon, labelled with W, whose magnitude is

W=mg

where m is the mass of the balloon+the helium gas inside and g is the acceleration due to gravity, and whose direction is downward

- The Buoyant force, labelled with B, whose magnitude is

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity, and where the direction is upward

(b) 4159 N

The buoyant force is given by

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity.

In this case we have

\rho_a = 1.29 kg/m^3 is the air density

V=329 m^3 is the volume of the balloon

g = 9.8 m/s^2 is the acceleration due to gravity

So the buoyant force is

B=(1.29 kg/m^3)(329 m^3)(9.8 m/s^2)=4159 N

(c) 1524 N

The mass of the helium gas inside the balloon is

m_h=\rho_h V=(0.179 kg/m^3)(329 m^3)=59 kg

where \rho_h is the helium density; so we the total mass of the balloon+helium gas inside is

m=m_h+m_b=59 kg+210 kg=269 kg

So now we can find the weight of the balloon:

W=mg=(269 kg)(9.8 m/s^2)=2635 N

And so, the net force on the balloon is

F=B-W=4159 N-2635 N=1524 N

(d) The balloon will rise

Explanation: we said that there are only two forces acting on the balloon: the buoyant force, upward, and the weight, downward. Since the magnitude of the buoyant force is larger than the magnitude of the weigth, this means that the net force on the balloon points upward, so according to Newton's second law, the balloon will have an acceleration pointing upward, so it will rise.

(e) 155 kg

The maximum additional mass that the balloon can support in equilibrium can be found by requiring that the buoyant force is equal to the new weight of the balloon:

W'=(m'+m)g=B

where m' is the additional mass. Re-arranging the equation for m', we find

m'=\frac{B}{g}-m=\frac{4159 N}{9.8 m/s^2}-269 kg=155 kg

(f) The balloon and its load will accelerate upward.

If the mass of the load is less than the value calculated in the previous part (155 kg), the balloon will accelerate upward, because the buoyant force will still be larger than the weight of the balloon, so the net force will still be pointing upward.

(g) The decrease in air density as the altitude increases

As the balloon rises and goes higher, the density of the air in the atmosphere decreases. As a result, the buoyant force that pushes the balloon upward will decrease, according to the formula

B=\rho_a V g

So, at a certain altitude h, the buoyant force will be no longer greater than the weight of the balloon, therefore the net force will become zero and the balloon will no longer rise.

4 0
3 years ago
Other questions:
  • 1. Astronomers measure the angle that the star appears to jump when viewing it from two different points in Earth's orbit. What
    8·2 answers
  • Find an expression for the acceleration a of the red block after it is released. use mr for the mass of the red block, mg for th
    6·2 answers
  • What causes an atom to be neutral? Equal number of protons and neutrons Equal distance between the nucleus and electrons Equal n
    10·1 answer
  • How does deformation by drawing of a semicrystalline polymer affect its tensile strength?
    9·1 answer
  • According to the scientific method, how does a physicist formulate and objectively test hypotheses?
    12·1 answer
  • How much greater is the light-collecting area of a 6-meter telescope than a 3-meter telescope? How much greater is the light-col
    6·1 answer
  • Hi, I'm stuck on the problem: Consider a resistor (R=1000 kΩ) and a capacitor (C=1μF) connected in series. This configuration is
    15·1 answer
  • 15 to who helps me out!
    14·1 answer
  • Describe the energy conversion in each of these scenarios: a plant using photosynthesis to make food, using a battery-powered fl
    13·1 answer
  • A car was moving a 14 m/s. After 30 seconds, it’s speed increased to 20 m/s. What was its acceleration during this time?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!