Answer:
Ionul de hidroniu este un factor important atunci când avem de-a face cu reacții chimice care apar în soluții apoase. Concentrația sa în raport cu hidroxidul este o măsură directă a pH-ului unei soluții. Se poate forma atunci când un acid este prezent în apă sau pur și simplu în apă pură. Formula chimică este H3O +
Explanation:
The hydronium ion is an important factor when dealing with chemical reactions that occur in aqueous solutions. Its concentration relative to hydroxide is a direct measure of the pH of a solution. It can be formed when an acid is present in water or simply in pure water. It's chemical formula is H3O+
marke me as brainliest please
The water cycle regardless if it is in a lake, our bodies, food, or underground.
Answer:
#2.
Explanation:
Look at the charges. Both are positive, therefore both are cations.
In 1 mol of CH3OH, you have 4 H-atoms (because 3 H-atoms
are attached to the C-atom, and one H-atom in the OH group). That means
in 0.500 mol of CH3OH, you have 2 H-atoms since it is halved. And then we have Avogadro's constant: 6.02 * 1023.
The question asks for how many hydrogen atoms there are in 0.500 mol CH3OH. Using the numbers that we have (Avogadro's constant and no. of H-atoms), the answer of the question will be something like:
<span>H-atoms in CH3OH = 2 * 6.02 * </span>1023<span> = ~1.2 * 10</span>24
Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>