1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delvig [45]
3 years ago
8

). A 50 mm diameter cylinder is subjected to an axial compressive load of 80 kN. The cylinder is partially

Engineering
1 answer:
Delicious77 [7]3 years ago
5 0

Answer:

\frac{e'_z}{e_z} = 0.87142

Explanation:

Given:-

- The diameter of the cylinder, d = 50 mm.

- The compressive load, F = 80 KN.

Solution:-

- We will form a 3-dimensional coordinate system. The z-direction is along the axial load, and x-y plane is categorized by lateral direction.

- Next we will write down principal strains ( εx, εy, εz ) in all three directions in terms of corresponding stresses ( σx, σy, σz ). The stress-strain relationships will be used for anisotropic material with poisson ratio ( ν ).

                          εx = - [ σx - ν( σy + σz ) ] / E

                          εy = - [ σy - ν( σx + σz ) ] / E

                          εz = - [ σz - ν( σy + σx ) ] / E

- First we will investigate the "no-restraint" case. That is cylinder to expand in lateral direction as usual and contract in compressive load direction. The stresses in the x-y plane are zero because there is " no-restraint" and the lateral expansion occurs only due to compressive load in axial direction. So σy= σx = 0, the 3-D stress - strain relationships can be simplified to:

                          εx =  [ ν*σz ] / E

                          εy = [ ν*σz ] / E

                          εz = - [ σz ] / E   .... Eq 1

- The "restraint" case is a bit tricky in the sense, that first: There is a restriction in the lateral expansion. Second: The restriction is partial in nature, such, that lateral expansion is not completely restrained but reduced to half.

- We will use the strains ( simplified expressions ) evaluated in " no-restraint case " and half them. So the new lateral strains ( εx', εy' ) would be:

                         εx' = - [ σx' - ν( σy' + σz ) ] / E = 0.5*εx

                         εx' = - [ σx' - ν( σy' + σz ) ] / E =  [ ν*σz ] / 2E

                         εy' = - [ σy' - ν( σx' + σz ) ] / E = 0.5*εy

                         εx' = - [ σy' - ν( σx' + σz ) ] / E =  [ ν*σz ] / 2E

- Now, we need to visualize the "enclosure". We see that the entire x-y plane and family of planes parallel to ( z = 0 - plane ) are enclosed by the well-fitted casing. However, the axial direction is free! So, in other words the reduction in lateral expansion has to be compensated by the axial direction. And that compensatory effect is governed by induced compressive stresses ( σx', σy' ) by the fitting on the cylinderical surface.

- We will use the relationhsips developed above and determine the induced compressive stresses ( σx', σy' ).

Note:  σx' = σy', The cylinder is radially enclosed around the entire surface.

Therefore,

                        - [ σx' - ν( σx'+ σz ) ] =  [ ν*σz ] / 2

                          σx' ( 1 - v ) = [ ν*σz ] / 2

                          σx' = σy' = [ ν*σz ] / [ 2*( 1 - v ) ]

- Now use the induced stresses in ( x-y ) plane and determine the new axial strain ( εz' ):

                           εz' = - [ σz - ν( σy' + σx' ) ] / E

                           εz' = - { σz - [ ν^2*σz ] / [ 1 - v ] } / E

                          εz' = - σz*{ 1 - [ ν^2 ] / [ 1 - v ] } / E  ... Eq2

- Now take the ratio of the axial strains determined in the second case ( Eq2 ) to the first case ( Eq1 ) as follows:

                            \frac{e'_z}{e_z} = \frac{- \frac{s_z}{E} * [ 1 - \frac{v^2}{1 - v} ]  }{-\frac{s_z}{E}}  \\\\\frac{e'_z}{e_z} = [ 1 - \frac{v^2}{1 - v} ] = [ 1 - \frac{0.3^2}{1 - 0.3} ] \\\\\frac{e'_z}{e_z} = 0.87142... Answer

You might be interested in
) A shaft encoder is to be used with a 50 mm radius tracking wheel to monitor linear displacement. If the encoder produces 256 p
andrey2020 [161]

Answer:

number of pulses produced =  162 pulses

Explanation:

give data

radius = 50 mm

encoder produces = 256 pulses per revolution

linear displacement = 200 mm

solution

first we consider here roll shaft encoder on the flat surface without any slipping

we get here now circumference that is

circumference = 2 π r .........1

circumference = 2 × π × 50

circumference = 314.16 mm

so now we get number of pulses produced

number of pulses produced = \frac{linear\ displacement}{circumference} × No of pulses per revolution .................2

number of pulses produced = \frac{200}{314.16} × 256

number of pulses produced =  162 pulses

5 0
3 years ago
Determine the nature of the following cycle (reversible, irreversible, or impossible): a refrigeration cycle draws heat from a c
vlabodo [156]

Answer:

Impossible.

Explanation:

The ideal Coefficient of Performance is:

COP_{i} = \frac{250\,K}{300\,K-250\,K}

COP_{i} = 5

The real Coefficient of Performance is:

COP_{r} = \frac{950\,kJ-70\,kJ}{70\,kJ}

COP_{r} = 12.571

Which leads to an absurds, since the real Coefficient of Performance must be equal to or lesser than ideal Coefficient of Performance. Then, the cycle is impossible, since it violates the Second Law of Thermodynamics.

6 0
3 years ago
Immediately remove the machine from service
My name is Ann [436]

Answer:

cellular service/data

Explanation:

Mobile Data and hotspot

3 0
1 year ago
5 pts
Softa [21]

Answer:

Helps to accurately calculate job costs

Explanation:

please mark me as brainliest

4 0
3 years ago
What colour is best for radiative heat transfer? a. Black b. Brown c. Blue d. White
GarryVolchara [31]

Answer:

The correct answer is option 'a': Black

Explanation:

As we know that for an object which is black in color it absorbs all the electromagnetic radiation's that are incident on it. Thus if we need to transfer energy to an object by radiation the most suitable color for the process  is black.

In contrast to black color white color is an excellent reflector, reflecting all the incident radiation that may be incident on it hence is the least suitable material for radiative heat transfer.

8 0
3 years ago
Other questions:
  • If a car sits out in the sun every day for a long time can light from the sun damage the car paint
    10·2 answers
  • Explain the differences between 1- Energy 2- Power 3- Work 4- Heat Your answer should explain the mathematica and physical meani
    5·1 answer
  • To assist in completing this question, you may reference the Animated Technique Video - MALDI-TOF Mass Spectroscopy. Complete th
    9·1 answer
  • During the collision, is the magnitude of the force of asteroid A on asteroid B greater than, less than, or equal to the magnitu
    11·2 answers
  • A 3-phase induction motor with 4 poles is being driven at 45 Hz and is running in its normal operating range. When connected to
    12·1 answer
  • The Energy Losses Associated with Valves and Fittings: a)- are generally associated with a K factor b)- are generally associated
    10·1 answer
  • What is meant by the thickness to chord ratio of an aerofoil?
    12·1 answer
  • 1. Differentiate between speed and velocity.<br>​
    9·2 answers
  • Roku internet service providet​
    11·1 answer
  • For the following circuit diagram, if A=010 , B= 101.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!