1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delvig [45]
3 years ago
8

). A 50 mm diameter cylinder is subjected to an axial compressive load of 80 kN. The cylinder is partially

Engineering
1 answer:
Delicious77 [7]3 years ago
5 0

Answer:

\frac{e'_z}{e_z} = 0.87142

Explanation:

Given:-

- The diameter of the cylinder, d = 50 mm.

- The compressive load, F = 80 KN.

Solution:-

- We will form a 3-dimensional coordinate system. The z-direction is along the axial load, and x-y plane is categorized by lateral direction.

- Next we will write down principal strains ( εx, εy, εz ) in all three directions in terms of corresponding stresses ( σx, σy, σz ). The stress-strain relationships will be used for anisotropic material with poisson ratio ( ν ).

                          εx = - [ σx - ν( σy + σz ) ] / E

                          εy = - [ σy - ν( σx + σz ) ] / E

                          εz = - [ σz - ν( σy + σx ) ] / E

- First we will investigate the "no-restraint" case. That is cylinder to expand in lateral direction as usual and contract in compressive load direction. The stresses in the x-y plane are zero because there is " no-restraint" and the lateral expansion occurs only due to compressive load in axial direction. So σy= σx = 0, the 3-D stress - strain relationships can be simplified to:

                          εx =  [ ν*σz ] / E

                          εy = [ ν*σz ] / E

                          εz = - [ σz ] / E   .... Eq 1

- The "restraint" case is a bit tricky in the sense, that first: There is a restriction in the lateral expansion. Second: The restriction is partial in nature, such, that lateral expansion is not completely restrained but reduced to half.

- We will use the strains ( simplified expressions ) evaluated in " no-restraint case " and half them. So the new lateral strains ( εx', εy' ) would be:

                         εx' = - [ σx' - ν( σy' + σz ) ] / E = 0.5*εx

                         εx' = - [ σx' - ν( σy' + σz ) ] / E =  [ ν*σz ] / 2E

                         εy' = - [ σy' - ν( σx' + σz ) ] / E = 0.5*εy

                         εx' = - [ σy' - ν( σx' + σz ) ] / E =  [ ν*σz ] / 2E

- Now, we need to visualize the "enclosure". We see that the entire x-y plane and family of planes parallel to ( z = 0 - plane ) are enclosed by the well-fitted casing. However, the axial direction is free! So, in other words the reduction in lateral expansion has to be compensated by the axial direction. And that compensatory effect is governed by induced compressive stresses ( σx', σy' ) by the fitting on the cylinderical surface.

- We will use the relationhsips developed above and determine the induced compressive stresses ( σx', σy' ).

Note:  σx' = σy', The cylinder is radially enclosed around the entire surface.

Therefore,

                        - [ σx' - ν( σx'+ σz ) ] =  [ ν*σz ] / 2

                          σx' ( 1 - v ) = [ ν*σz ] / 2

                          σx' = σy' = [ ν*σz ] / [ 2*( 1 - v ) ]

- Now use the induced stresses in ( x-y ) plane and determine the new axial strain ( εz' ):

                           εz' = - [ σz - ν( σy' + σx' ) ] / E

                           εz' = - { σz - [ ν^2*σz ] / [ 1 - v ] } / E

                          εz' = - σz*{ 1 - [ ν^2 ] / [ 1 - v ] } / E  ... Eq2

- Now take the ratio of the axial strains determined in the second case ( Eq2 ) to the first case ( Eq1 ) as follows:

                            \frac{e'_z}{e_z} = \frac{- \frac{s_z}{E} * [ 1 - \frac{v^2}{1 - v} ]  }{-\frac{s_z}{E}}  \\\\\frac{e'_z}{e_z} = [ 1 - \frac{v^2}{1 - v} ] = [ 1 - \frac{0.3^2}{1 - 0.3} ] \\\\\frac{e'_z}{e_z} = 0.87142... Answer

You might be interested in
For a bronze alloy, the stress at which plastic deformation begins is 266 MPa and the modulus of elasticity is105 GPa.
pentagon [3]

Answer:

88750 N

Explanation:

given data:

plastic deformation σy=266 MPa=266*10^6 N/m^2

cross-sectional area Ao=333 mm^2=333*10^-6 m^2

solution:

To determine the maximum load that can be applied without

plastic deformation (Fy).

Fy=σy*Ao

   =88750 N

7 0
3 years ago
This manometer is used to measure the difference in water level between the two tanks.
SpyIntel [72]

Answer:

a) True

Explanation:

hope it helps u

3 0
3 years ago
Why or why not the following materials will make good candidates for the construction of
zvonat [6]

Answer:

Answer explained below

Explanation:

3.] a] A turbine blade is the individual component which makes up the turbine section of a gas turbine. The blades are responsible for extracting energy from the high temperature, high pressure gas produced by the combustor.

The turbine blades are often the limiting component of gas turbines. To survive in this difficult environment, turbine blades often use exotic materials like superalloys and many different methods of cooling, such as internal air channels, boundary layer cooling, and thermal barrier coatings. The blade fatigue failure is one of the major source of outages in any steam turbines and gas turbines which is due to high dynamic stresses caused by blade vibration and resonance within the operating range of machinery.

To protect blades from these high dynamic stresses, friction dampers are used.

b] Thermal barrier coatings (TBC) are highly advanced materials systems usually applied to metallic surfaces, such as on gas turbine or aero-engine parts, operating at elevated temperatures, as a form ofexhaust heat management.

These 100μm to 2mm coatings serve to insulate components from large and prolonged heat loads by utilizing thermally insulating materials which can sustain an appreciable temperature difference between the load-bearing alloys and the coating surface.

In doing so, these coatings can allow for higher operating temperatures while limiting the thermal exposure of structural components, extending part life by reducing oxidation and thermal fatigue.

In conjunction with active film cooling, TBCs permit working fluid temperatures higher than the melting point of the metal airfoil in some turbine applications.

Due to increasing demand for higher engine operation (efficiency increases at higher temperatures), better durability/lifetime, and thinner coatings to reduce parasitic weight for rotating/moving components, there is great motivation to develop new and advanced TBCs.

3 0
4 years ago
To increase the thermal efficiency of a reversible power cycle operating between thermal reservoirs at TH and Tc, would you incr
alukav5142 [94]

<u></u>\ T_{c} has greater effect.

<u>Explanation</u>:

\eta_{\max }=1-\frac{T_{c}}{T_{A}}

T_{c}\\ = Temperature of cold reservoir

T_{H} = Temperature of hot reservoir

when T_{c} is decreased by 't',

$\eta_{\text {incre }}$ = 1-\frac{\left(\tau_{c}-t\right)}{T_{H}}

=n \ + \frac{t}{T_{n}}      -(i)

when {T_{H}} is increased by 'T'

\eta_{i n c}=\frac{n+\frac{t}{T_{H}}}{\left(1+\frac{k}{T_{H}}\right)}-(ii)

\eta_{\text {incre }} \ T_{c}>\eta_{\text {incre }} T_{\text {H }}

7 0
3 years ago
PLEASE HURRY!!!
Naily [24]

Answer:

A

Explanation:

He should get a job in engineering to see what it's like to work in the field.

3 0
3 years ago
Read 2 more answers
Other questions:
  • A steam reformer operating at 650C and 1 atm uses propane as fuel for hydrogen production. At the given operating conditions, th
    12·1 answer
  • Oil with a density of 850 kg/m3 and kinematic viscosity of 0.00062 m2/s is being discharged by an 8-mm-diameter, 42-m-long horiz
    9·1 answer
  • The fouling on the heat exchanger surfaces causes additional thermal resistance, thus decreases the heat transfer rate. a)- True
    11·1 answer
  • A square loop of wire surrounds a solenoid. The side of the square is 0.1 m, while the radius of the solenoid is 0.025 m. The sq
    6·1 answer
  • A 1000 KVA three phase transformer has a secondary voltage of 208/120. What is the secondary full load amperage?
    9·1 answer
  • 5. Identify the pros and cons of<br> manufactured siding.
    12·1 answer
  • The penalty for littering 15 lb or less is _____.<br> A. $25<br> B. $50<br> C. $100<br> D. $150
    14·1 answer
  • Define the terms (a) thermal conductivity, (b) heat capacity and (c) thermal diffusivity
    11·1 answer
  • What is the following diagram called?
    15·1 answer
  • One reason the shuttle turns on its back after liftoff is to give the pilot a view of the horizon. Why might this be useful?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!