Answer:
a) λ = 189.43 10⁻⁹ m b) λ = 269.19 10⁻⁹ m
Explanation:
The diffraction network is described by the expression
d sin θ= m λ
Where m corresponds to the diffraction order
Let's use trigonometry to find the breast
tan θ = y / L
The diffraction spectrum is measured at very small angles, therefore
tan θ = sin θ / cos θ = sin θ
We replace
d y / L = m λ
Let's place in the first order m = 1
Let's look for the separation of the lines (d)
d = λ L / y
d = 501 10⁻⁹ 9.95 10⁻² / 15 10⁻²
d = 332.33 10⁻⁹ m
Now we can look for the wavelength of the other line
λ = d y / L
λ = 332.33 10⁻⁹ 8.55 10⁻²/15 10⁻²
λ = 189.43 10⁻⁹ m
Part B
The compound wavelength B
λ = 332.33 10⁻⁹ 12.15 10⁻² / 15 10⁻²
λ = 269.19 10⁻⁹ m
kinematic equation
v squared = u squared + 2 a x s
v= sq root (0 + 2 10 x 65)
i thimk
Producers, consumers, and decomposers help to move matter and energy through ecosystems.
Hope this helps! :)
Dependent variable is your answer.
Answer:
a. a=33.34ms⁻², V=164.4m/s
Explanation:
Since the dragster started with zero velocity, de determine the acceleration using of the equations of motion.
Below are the data given
Distance, s=404.5m,
time taken,t=4.922secs
Using the equation
S=ut+1/2at²
where u is the initial velocity and u=0
Making the acceleration the subject of the formula, we arrive at
a=2s/t²
a=(2*404.5)/4.922²
a=33.34ms⁻².
To determine the velocity, we use
V=u+at
V=0+33.34ms⁻² *4.922sec
V=164.4m/s