The wavelength of radio waves<span> is much larger than the size of the </span>buildings<span>, but the wavelength of </span>light waves<span> is much smaller.</span>
Answer:
<h3>C. electrial</h3>
Explanation:
<h3>I hope l helped you. </h3><h3>Please follow me. ❤❤❤❤</h3>
Answer:
a) x = 1.5 *10⁻⁴cos(524πt) m
b) v = -1.5 *10⁻⁴(524π)sin(524πt) m/s
a = -1.5 *10⁻⁴(524π)²cos(524πt) m/s²
c) x(1) = 1.5 *10⁻⁴ m = 1.5 *10⁻1 mm
x(0.001) = -1.13*10⁻⁵ m = -1.13*10⁻² mm
Explanation:
x = Acos(ωt)
ω = 2πf = 2π(262) = 524π rad/s
x = 1.5 *10⁻⁴cos(524πt)
v = y' = -Aωsin(ωt)
v = -1.5 *10⁻⁴(524π)sin(524πt)
a = v' = -Aω²cos(ωt)
a = -1.5 *10⁻⁴(524π)²cos(524πt)
not sure about the last part as time is generally not given in mm
I will show at 1 second and at 0.001 s to try to cover bases
x(1) = 1.5 *10⁻⁴cos(524π(1))
x(1) = 1.5 *10⁻⁴cos(524π)
x(1) = 1.5 *10⁻⁴(1)
x(1) = 1.5 *10⁻⁴ m = 1.5 *10⁻1 mm
x(0.001) = 1.5 *10⁻⁴cos(524π(0.001))
x(0.001) = 1.5 *10⁻⁴cos(0.524π)
x(0.001) = 1.5 *10⁻⁴(-0.0753268)
x(0.001) = -1.129902...*10⁻⁵ m
x(0.001) = -1.13*10⁻⁵ m = -1.13*10⁻² mm
Answer:
t = 2.6 billion years
Explanation:
If potassium becomes 25% of its initial value
so we can say it becomes half two times
as we know that 25% means it is 1/4 times of initial value
so we will have

here we know that





t = 2.6 billion years