Answer:
the question this morning
Explanation:
90+70 look than
Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>
Answer:
4 A
Explanation:
The relationship between current, voltage and resistance in a circuit is given by Ohm's law:

where
V is the voltage
R is the resistance
I is the current
The equation can also be rewritten as

from which we see that the current is inversely proportional to the resistance, R.
In this problem, the initial current is I = 8 A. Then the resistance is doubled:
R ' = 2R
So the new current is

so the current is halved.
If a ball is if a ball is dropped from a 576ft building it would take about 8 seconds for it to hit the ground.
Answer:
because each row increases in atomic mass by a specific number, so anything over five is in the second row.