Answer:
the system has infinitely many solutions.
Explanation:
The system is 2x + y = 1 and 4x + 2y = 2. Solutions to a system are the intersection points. Since these two lines are the same line they intersect everywhere. There are infinitely many solutions.
hope this helps
plz mark brainliest
The mole fraction of KCl in the solution is 0.1051
calculation
mole fraction of KCl in solution = moles of KCl / total number of moles(moles of KCl +moles of H2O)
moles=mass/molar mass
mass of KCl=32.7g
molar mass of KCl= 39 +35.5
moles of KCl is therefore= 32.7g/74.5 g/mol=0.439 moles
find the moles of H2O= mass of H2O/molar mass
mass of H2O=100-32.7=67.3g
molar mass of H2O=( 1 x2) +16=18 g/mol
moles = 67.3/18 =3.739 moles
total moles=3.739+0.439=4.178 moles
mole fraction is therefore=0.439/4.178=0.1051
Answer: an increase in the concentration of
in aqueous solutions and is capable of donating one or more 
Explanation:
According to Arrhenius concept, a base is defined as a substance which donates hydroxide ions
when dissolved in water and an acid is defined as a substance which donates hydrogen ions
in water.
According to the Bronsted Lowry conjugate acid-base theory, an acid is defined as a substance which donates protons and a base is defined as a substance which accepts protons.
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
Thus According to the Arrhenius concept, an acid is a substance that causes an increase in the concentration of
in aqueous solutions and is capable of donating one or more 
Answer:
True
Explanation:
Because Carbon is the primary component of macromolecules, including proteins, lipids, nucleic acids, and carbohydrates.
Answer:
They become ductile and deform plastically
Explanation:
When rocks are buried by the materials up to a greater depth, then the confining pressure increases significantly. This results in the ductile behavior of the rocks at such depth. These rocks are present in the ductile region where the depth is about more than 20 to 30 km. Here the rocks are subjected to extremely high pressure and temperature conditions, which favors the transformation of rocks into more higher-grade metamorphic rocks. It is also enhanced due to the geothermal gradient.
Under such high pressure and temperature, the rocks show the behavior of plasticity, where the rocks undergo bending, buckling as well as they tend to flow, and there occurs low strain rate, resulting in the permanent deformation of rocks.
Thus, the rocks become ductile and deform plastically at such conditions.