Answer:
34g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
H2S + 2AgNO3 —> 2HNO3 + Ag2S
Next, we shall determine the number of mole of H2S required to react with 2 moles of AgNO3.
This is illustrated below:
From the balanced equation above,
We can see that 1 mole of H2S is required to react completely with 2 moles of AgNO3.
Finally, we shall convert 1 mole of H2S to grams. This is shown below:
Number of mole H2S = 1 mole
Molar mass of H2S = (2x1) + 32 = 34g/mol
Mass = number of mole x molar Mass
Mass of H2S = 1 x 34
Mass of H2S = 34g
Therefore, 34g of H2S is needed to react with 2 moles of AgNO3.
Speed in km/hr = 15 x 18
------------
5
= 54 km/hr.
Hope this helps!
Answer:
KBr is limiting reactant.
Explanation:
Given data:
Mass of KBr =4g
Mass of Cl₂ = 6 g
Limiting reactant = ?
Solution:
Chemical equation:
2KBr + Cl₂ → 2KCl + Br₂
Number of moles of KBr:
Number of moles = mass/molar mass
Number of moles = 4 g/ 119 gmol
Number of moles = 0.03 mol
Number of moles of Cl₂:
Number of moles = mass/molar mass
Number of moles = 6 g/ 70 gmol
Number of moles = 0.09 mol
Now we will compare the moles of reactant with product.
KBr : KCl
2 : 2
0.03 : 0.03
KBr : Br₂
2 : 1
0.03 : 1/2×0.03= 0.015
Cl₂ : KCl
1 : 2
0.09 : 2/1×0.09 = 0.18
Cl₂ : Br₂
1 : 1
0.09 : 0.09
Less number of moles of product are formed by the KBr thus it will act as limiting reactant while Cl₂ is present in excess.
Answer:
i'd say the second choice.
Explanation:
the rise in temperature causes the particles to vibrate causing motion. they collide thus resulting to the weakening of the particles.
hope it is of use to you.