Nascent oxygen has much higher reactivity than the oxygen bubbled through the reaction mixture. It doesn't stay nascent for long (you are right about it being converted quick to just O2), which is why it has to be generated in situ
Ion-dipole forces
H2O has hydrogen bonding, which is a form of dipole-dipole forces, and NO3- is an ion, so the intermolecular attraction is ion-dipole.
It’s deceleration hope that helps!
Answer:
The most common example is the molar volume of a gas at STP (Standard Temperature and Pressure), which is equal to 22.4 L for 1 mole of any ideal gas at a temperature equal to 273.15 K and a pressure equal to 1.00 atm.If an ideal gas at a constant temperature is initially at a pressure of 3.8 atm and is then allowed to expand to a volume of 5.6 L and a pressure of 2.1 - 18914… ... of 5.6 L and a pressure of 2.1 atm, what is the initial volume of the gas? ... An ideal gas is at a pressure of 1.4 atm and has a volume of 3 L.
Explanation:
I hope I help :)
Explanation:
Protons have a positive charge. Electrons have a negative charge. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.