Answer:
the impedance of the circuit is 25.7 ohms.
Explanation:
It is given that,
Voltage, V = 50 volts
Frequency, f = 60 Hz
Resistance, R = 25 ohms
Capacitive resistance, 
Inductive resistance, 
We need to find the impedance of the circuit. It is given by :


Z = 25.7 ohms
So, the impedance of the circuit is 25.7 ohms. Hence, this is the required solution.
Newton’s 2nd law states that Force is equal to
the product of mass (m) and acceleration (a):
F = m a --->
1
While in magnetic forces, force can also be expressed as:
F = q v B --->
2
where,
q = total charge
v = velocity = 45 cm / s = 0.45 m / s
B = the magnetic field = 85 T
First we solve for the total charge, q:
q = 3.8 × 10^-23 g (1 mol / 23 g) (6.022 × 10^23 electrons / mol) (1.602 ×
10^-19 C / electron)
q = 1.594 × 10^-19 C
We equate equations 1 and 2 then solve for acceleration a:
m a = q v B
a = q v B / m
a = [1.594 × 10^-19 C * 0.45 m / s * 85 T] / 3.8 × 10-26 kg
a = 160,437,862.2 m/s^2
Therefore the maximum acceleration of Na ions is about 160 × 10^6 m/s^2.
Decay of Schizomycetes waste present in waste water leads to unpleasant smell.
These microorganisms, known as iron and sulfur bacteria, cause hydrogen sulfide to be found in water supplies. They include crenothrix and beggiatoa. Most often found in groundwater supplies, they produce an offensive odor of decaying matter. (I'm not sure)
D. Carbon
Carbon cycle is an example of a biogeochemical cycle. <span>The biogeochemical cycles move through mainly </span>the biotic and abiotic components of the earth<span>, more elaborately the spheres -biospheres, lithosphere, hydrosphere and atmosphere regions of the ecosystem. These biogeochemical cycles, from its terminology and discernable word morphology- involves the biological, geological and chemical components that make out to complete an exact and purposed cycle. The purpose in these cycles are to maintain balance and to ensure the ongoing process of the living and non-living organisms in the environment. These cycles’ help to living organisms survive and thrive. One popular example is the water cycle. </span>