<span>3.78 m
Ignoring resistance, the ball will travel upwards until it's velocity is 0 m/s. So we'll first calculate how many seconds that takes.
7.2 m/s / 9.81 m/s^2 = 0.77945 s
The distance traveled is given by the formula d = 1/2 AT^2, so substitute the known value for A and T, giving
d = 1/2 A T^2
d = 1/2 9.81 m/s^2 (0.77945 s)^2
d = 4.905 m/s^2 0.607542 s^2
d = 2.979995 m
So the volleyball will travel 2.979995 meters straight up from the point upon which it was launched. So we need to add the 0.80 meters initial height.
d = 2.979995 m + 0.8 m = 3.779995 m
Rounding to 2 decimal places gives us 3.78 m</span>
Answer:
The velocity is 
Henrietta is at distance
from the under the window
Explanation:
From the question we are told that
The speed of Henrietta is 
The height of the window from the ground is 
Generally the time taken for the lunch to reach the ground assuming it fell directly under the window is

=>
=>
Generally the time taken for the lunch to reach Henrietta is mathematically represented as

Here
is the time duration that elapsed after Henrietta has passed below the window the value is given as 4 s
Now
=>
Generally the distance covered by Henrietta before catching her lunch is

=> 
=> 
Generally the speed with which Bruce threw her lunch is mathematically represented as


I am absolutely sure that the way how can a moving coil galvanometer can be made into a dc ammeter is of course by connecting a. low resistance across the meter. You should remember that you must connect <span>a shunt resistor straight across the galvanometer. Do hope this answer will help you! Regards.</span>