The answer would be C. It will decrease with descent. Hope this helps!
There are two equal forces of gravity between the Earth and the Moon.
One force pulls the Moon toward the Earth.
The other force pulls the Earth toward the Moon.
If only this gravity suddenly switched off, then the moon would
continue to orbit the Sun, very much as it does now.
If ALL gravity suddenly switched off, then . . .
-- the Moon would stop orbiting the Earth and would sail away, in
a straight line and at the speed it had when gravity disappeared;
-- the Earth would stop orbiting the Sun and would sail away, in
a straight line and at the speed it had when gravity disappeared;
-- all the gases surrounding the Earth ... which we call "air" ... would
start drifting away, and expanding into a giant cloud of gas, and stop
being an atmosphere;
-- the Sun would completely fall apart, expand into a giant cloud of gas,
and stop being a star.
Answer:
2.31J
Explanation:
the energy for a spring system is given by:

where
is the spring constant:
and
is the distance stretched from the equilibrium position.
In the first case 
so the energy to stretch the spring 1.81cm is:

and for the second case, the energy to stretch the spring 5.79cm:


so to answer a) we must find the difference between these energies:

Answer:
option D is correct
Explanation:
It is important to note that equipotential lines are always perpendicular to electric field lines. No work is required to move a charge along an equipotential, since ΔV = 0. Thus the work is :
W = −ΔPE = −qΔV = 0.
Work is zero if force is perpendicular to motion. Force is in the same direction as E, so that motion along an equipotential must be perpendicular to E. More precisely, work is related to the electric field by:
W = Fd cos θ = qEd cos θ = 0.
- The change in kinetic energy Δ K.E by conservation should be:
Δ K.E = W
Since, W = 0:
Δ K.E = 0
- If change in kinetic energy is zero it means that charge moves at a constant speed. Hence, option D is correct.
Answer: A wave can be thought of as a disturbance or oscillation that travels through space-time, accompanied by a transfer of energy.
Explanation: