Answer:
Explanation:
If there is only 1 force, the body can never be in equilibrium, providing that the force is not zero (and that would hardly be a force. Zero is possible in math and it means something. It is debatable in physics).
You cannot think of a condition where something is stationary on planet earth and there are not 2 forces or more forces involved.
Think of something like a block of wood sitting on a table. It is not moving, we'll say. Gravity is holding it down, but what is pushing up on it?
The table is. There are 2 forces and they are equal in magnitude, but opposite in direction. That matters.
Answer:
i dont know what you mean
Explanation:
8) the energy released by fusion is generally 3 to 4 times larger than with fission. Fission has very few by-products but fusion releases large amounts of radioactive particles because it starts with large nuclei.
9) Alpha particles are 2 protons and 2 neutrons all put together. It's really the nucleus of a helium atom. It is most dangerous if you ingest it but it can be stopped with a sheet of paper so outside the body it's not as dangerous as others and due to its size it can't get very far in the air before hitting air molecules
beta particles are high energy electrons or positrons. They travel further due to their small size but can be stopped by a thin barrier of plastic or wood.
Gamma rays are high frequency photons (light) They are stopped by metal plates and go through human tissue. They are quite dangerous.
10) The mass that is lost in chemical reactions is very small. Solve E=mc² for mass and you get m=E/c². This says the mass you lose is equal to the energy you gained divided by the speed of light squared. c² is a VERY big number so you need a lot of energy produced to notice it. Chemical reactions are simply too inefficient to get that much energy out.
11)You need high temperatures for fusion because you're trying to push two atoms together (to "fuse" them as the name suggests) The electrons in one atom repel the other electrons in the other atoms. When stripped down to only protons, you still have to overcome this repulsion (Coulomb repulsion). High temperatures means high velocity of the particles in the plasma. This gives them enough "oomph" to get close enough to fuse. Once close enough to each other, the nuclear force takes over and overwhelms the Coulomb repulsion and the nuclei fuse and release energy in doing so.
If there's any point in a circuit where the current has a choice
of which branch to take, then you have a <em>parallel circuit</em>.
Answer:
If I double the current in the inductor, the new total energy will become 4E (option f).
Explanation:
The coil or inductor is a passive component made of an insulated wire that stores energy in the form of a magnetic field due to its form of coiled turns of wire, through a phenomenon called self-induction. In other words, inductors store energy in the form of a magnetic field. The energy stored in the space where there is a magnetic field in the inductor is:

where E is Energy [J], L is Inductance [H] and I is Current [A].
If you double the current in the inductor, then the new value of the current is I'= 2*I. So replacing the new total energy is:

Then:

<em><u>If I double the current in the inductor, the new total energy will become 4E (option f).</u></em>