Answer:
Energy is essentially work done by an object or on object.
From,
W = Fd
It's directly proportional to mass.
from,
K. E = 1/2mv²
Energy is directly proportional to mass.
P. E = mgh
Energy is directly proportional to mass.
H = mc∆T
Energy is directly proportional to mass.
Thus increasing mass will increase the energy also imparted on another object since all the above eqns show that relationship.
And for 2 moving bodies
K.Ei = K.Ef(energy conservation)
m1u²1 + m2u²2 = m1v²1 + m2v²2
The relationship is the same that the greater mass the greater the impact.
Answer: hello some part of your question is missing attached below is the missing detail
answer :
<em>w</em>f = M( v cos∅ )D / I
Explanation:
The Angular speed <em>wf </em>of the system after collision in terms of the system parameters and I can be expressed as
considering angular momentum conservation
Li = Lf
M( v cos∅ ) D = ( ML^2 / 3 + mD^2 ) <em>w</em>f
where ; ( ML^2 / 3 + mD^2 ) = I ( Inertia )
In terms of system parameters and I
<em>w</em>f = M( v cos∅ )D / I
Answer:So the answer is B
Explanation: When the light rays either bend or change their direction while passing from one medium to another it is called refraction of light. The refraction of light takes place when light travels from air into glass, from glass into air, from air into water or from water into air.
Answer:
2/3
Explanation:
In the case shown above, the result 2/3 is directly related to the fact that the speed of the rocket is proportional to the ratio between the mass of the fluid and the mass of the rocket.
In the case shown in the question above, the momentum will happen due to the influence of the fluid that is in the rocket, which is proportional to the mass and speed of the same rocket. If we consider the constant speed, this will result in an increase in the momentum of the fluid. Based on this and considering that rocket and fluid has momentum in opposite directions we can make the following calculation:
Rocket speed = rocket momentum / rocket mass.
As we saw in the question above, the mass of the rocket is three times greater than that of the rocket in the video. For this reason, we can conclude that the calculation should be done with the rocket in its initial state and another calculation with its final state:
Initial state: Speed = rocket momentum / rocket mass.
Final state: Speed = 2 rocket momentum / 3 rocket mass. -------------> 2/3