Answer:
The unknown element is Sb
Explanation:
The first thing we must note is that the unknown element must be a member of group 15 in the periodic table. This is clear from the fact that the two oxides formed are X2O3 and X2O5. This implies that the unknown element X must have a valency of 3 or 5. This corresponds to our knowledge that the outermost electron configuration of group 15 elements is ns2np3. Hence, group fifteen elements can have a valency of 3 or 5.
The electronic configuration of antimony is; [Kr]4d10 5s2 5p3. This implies that the atom is paramagnetic since there are three unpaired 5p electrons. The oxides of antimony are known to be amphoteric. An ampohoteric oxide reacts with both acid and base, hence the answer.
Answer:
The correct answer is option B.
Explanation:
Michaelis–Menten 's equation:
![v=V_{max}\times \frac{[S]}{(K_m+[S])}=k_{cat}[E_o]\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
v = rate of formation of products
[S] = Concatenation of substrate = ?
= Michaelis constant
= Maximum rate achieved
= Catalytic rate of the system
= initial concentration of enzyme
We have :

[S] =?

![v=V_{max}\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![\frac{V_{max}}{4}=V_{max}\times \frac{[S]}{(0.0050 M+[S])}](https://tex.z-dn.net/?f=%5Cfrac%7BV_%7Bmax%7D%7D%7B4%7D%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%280.0050%20M%2B%5BS%5D%29%7D)
![[S]=\frac{0.005 M}{3}=1.7\times 10^{-3} M](https://tex.z-dn.net/?f=%5BS%5D%3D%5Cfrac%7B0.005%20M%7D%7B3%7D%3D1.7%5Ctimes%2010%5E%7B-3%7D%20M)
So, the correct answer is option B.
The second reaction with the volume of 5L will occur faster as compared to the first reaction of volume 10L.
Volume is inversely proportional to the rate of reaction.
As volume increases rate of reaction decreases and as volume decreases rate of reaction increases.
Let's consider a reaction A → B.
r is rate of reaction and K is rate constant, A is the concentration of reaction.
r = k(A)
r is directly proportional to the A.
But the concentration of A is in Moles/liters (i.e. moles per unit volume)
r is inversely proportional to the volume of vessel or chamber.
Hence as volume increases rate of reaction decreases.
For study more about reaction rate refer following link brainly.com/question/19513092.
#SPJ1.
Your answer would be C9H16