Answer:
part (a)
towards north east direction.
part (b) s = 46.60 m
Explanation:
Given,
- velocity of the river due to east =

- velocity of the boat due to the north =

part (a)
River is flowing due to east and the boat is moving in the north, therefore both the velocities are perpendicular to each other and,
Hence the resultant velocity i,e, the velocity of the boat relative to the shore is in the North east direction. velocities are the vector quantities, Hence the resultant velocity is the vector addition of these two velocities and the angle between both the velocities are 
Let 'v' be the velocity of the boat relative to the shore.

Let
be the angle of the velocity of the boat relative to the shore with the horizontal axis.
Direction of the velocity of the boat relative to the shore.
part (b)
- Width of the shore = w = 300m
total distance traveled in the north direction by the boat is equal to the product of the velocity of the boat in north direction and total time taken
Let 't' be the total time taken by the boat to cross the width of the river.
Therefore the total distance traveled in the direction of downstream by the boat is equal to the product of the total time taken and the velocity of the river
Answer:
The equation v – = v 0 + v 2 v – = v 0 + v 2 is reflects the fact that when acceleration is constant, v – is just the simple average of the initial and final velocities.
Explanation:
hope this is it
Answer:3.51
Explanation:
Given
Coefficient of Friction 
Consider a small element at an angle \theta having an angle of 
Normal Force

Friction 

and 







What is the weight of a 4.2 kg bowling ball on Mars?
Answer:
1.59 kg
Explanation:
The formula is:
<u>F = G((Mm)/r2)
</u>
F is the gravitational force between two objects,
G is the Gravitational Constant (6.674×10-11 Newtons x meters2 / kilograms2),
M is the planet's mass (kg),
m is your mass (kg), and
r is the distance (m) between the centers of the two masses (the planet's radius).
Hope this helps
--Jay