1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Doss [256]
3 years ago
7

What units are used to measure force

Physics
2 answers:
spayn [35]3 years ago
8 0
In the metric system, the most common unit used is a Newton, which is a (kg x m)/sec^2 and in the English system, the most common unit is a Pound, which is a (slug x ft)/sec^2.

But really, any unit that conforms to a the diagram of a mass times a length divided by a time squared can be used to measure force. A microgram x kilometer divided by decade^2 is also a unit to measure force, albeit a very ugly one. I hope this helps :)
Nastasia [14]3 years ago
5 0
N, or Neutons are a common way to measure force
You might be interested in
A river flows due east at 1.60 m/s. A boat crosses the river from the south shore to the north shore by maintaining a constant v
Citrus2011 [14]

Answer:

part (a) v\ =\ 10.42\ at\ 81.17^o towards north east direction.

part (b) s = 46.60 m

Explanation:

Given,

  • velocity of the river due to east = v_r\ =\ 1.60\ m/s.
  • velocity of the boat due to the north = v_b\ =\ 10.3\ m/s.

part (a)

River is flowing due to east and the boat is moving in the north, therefore both the velocities are perpendicular to each other and,

Hence the resultant velocity i,e, the velocity of the boat relative to the shore is in the North east direction. velocities are the vector quantities, Hence the resultant velocity is the vector addition of these two velocities and the angle between both the velocities are 90^o

Let 'v' be the velocity of the boat relative to the shore.

\therefore v\ =\ \sqrt{v_r^2\ +\ v_b^2}\\\Rightarrow v\ =\ \sqrt{1.60^2\ +\ 10.3^2}\\\Rightarrow v\ =\ 10.42\ m/s.

Let \theta be the angle of the velocity of the boat relative to the shore with the horizontal axis.

Direction of the velocity of the boat relative to the shore.\therefore Tan\theta\ =\ \dfrac{v_b}{v_r}\\\Rightarrow Tan\theta\ =\ \dfrac{10.3}{1.60}\\\Rightarrow \theta\ =\ Tan^{-1}\left (\dfrac{10.3}{1.60}\ \right )\\\Rightarrow \theta\ =\ 81.17^o

part (b)

  • Width of the shore = w = 300m

total distance traveled in the north direction by the boat is equal to the product of the velocity of the boat in north direction and total time taken

Let 't' be the total time taken by the boat to cross the width of the river.\therefore w\ =\ v_bt\\\Rightarrow t\ =\ \dfrac{w}{v_b}\\\Rightarrow t\ =\ \dfrac{300}{10.3}\\\Rightarrow t\ =\ 29.12 s

Therefore the total distance traveled in the direction of downstream by the boat is equal to the product of the total time taken and the velocity of the river\therefore s\ =\ u_rt\\\Rightarrow s\ =\ 1.60\times 29.12\\\Rightarrow s\ =\ 46.60\ m

7 0
3 years ago
Which formula represents final velocity of an object with average acceleration?
zheka24 [161]

Answer:

The equation v – = v 0 + v 2 v – = v 0 + v 2 is reflects the fact that when acceleration is constant, v – is just the simple average of the initial and final velocities.

Explanation:

hope this is it

5 0
2 years ago
Read 2 more answers
A rope passes over a fixed sheave with both ends hanging straight down. The coefficient of friction between the rope and sheave
Oliga [24]

Answer:3.51

Explanation:

Given

Coefficient of Friction \mu =0.4

Consider a small element at an angle \theta having an angle of d\theta

Normal Force=T\times \frac{d\theta }{2}+(T+dT)\cdot \frac{d\theta }{2}

N=T\cdot d\theta

Friction f=\mu \times Normal\ Reaction

f=\mu \cdot N

and T+dT-T=f=\mu Td\theta

dT=\mu Td\theta

\frac{dT}{T}=\mu d\theta

\int_{T_2}^{T_1}\frac{dT}{T}=\int_{0}^{\pi }\mu d\theta

\frac{T_2}{T_1}=e^{\mu \pi}

\frac{T_2}{T_1}=e^{0.4\times \pi }

\frac{T_2}{T_1}==e^{1.256}

\frac{T_2}{T_1}=3.51

7 0
3 years ago
What is the weight of a 4.2 kg bowling ball on Mars?
Nataliya [291]

What is the weight of a 4.2 kg bowling ball on Mars?

Answer:

1.59 kg

Explanation:

The formula is:

<u>F = G((Mm)/r2) </u>

F is the gravitational force between two objects,

G is the Gravitational Constant (6.674×10-11 Newtons x meters2 / kilograms2),

M is the planet's mass (kg),

m is your mass (kg), and

r is the distance (m) between the centers of the two masses (the planet's radius).

Hope this helps

--Jay

8 0
3 years ago
Satellites can focus on specific latitudes using:
Fittoniya [83]
B- east west orbits
4 0
2 years ago
Other questions:
  • 1. How much energy is needed to raise 1 g of water 1°C?
    15·1 answer
  • A positive charge, q1, of 5 µC is 3 × 10–2 m west of a positive charge, q2, of 2 µC. What is the magnitude and direction of the
    14·2 answers
  • If an airfoil is inclined at a high incidence angle to the flow, then the boundary layer will tend to separate from the top surf
    5·1 answer
  • The mass of a lift is 600kg.the. The maximum tensile force that the cable supporting the lift can withstand is 7kN. Calculate th
    12·1 answer
  • A 30.0 g mass of iron at 24.5°C is heated to 45.0°C. The theoretical specific
    10·1 answer
  • Explain the relationship between the distance between the string and your elbow and the effort required to lift the mass.
    11·2 answers
  • The bar graph shows energy data taken from a roller coaster at a theme park. analyze the data and assess its validity. 3-5 sente
    11·1 answer
  • A skateboarder, starting from the top of a ramp 4,5 m above the ground, skates down the ramp. The mass of the skateboarder and h
    7·1 answer
  • Is kinetic energy conserved in an elastic collision.
    13·1 answer
  • In a bell-shaped curve, the x-axis (horizontal direction) of the graph represents which of the following
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!