Answer:
0.435atm
Explanation:
cylindrical tank has a tight-fitting piston that allows the volume of the tank to be changed. The tank originally contains air with a volume of 0.185 m3 at a pressure of 0.740 atm. The piston is slowly pulled out until the volume of the gas is increased to 0.315 m3. If the temperature remains constant, what is the final value of the pressure?
Given
Initial pressure P1= 0.740atm
Initial volume V1= 0.185 m3
Final pressure P2= ?
Final volume V2= 0.315 m3
At constant temperature, the pressure of a syste is inversely proportional to volume, by Boyles law then
P1V1=P2V2
P2=P1V1/V2
=(0.185*0.740)/0.315
0.1369/0.315
= 0.435atm
Therefore, final pressure is 0.435atm
Stable isotopes, radioisotopes, oxygen
Answer:
7.1 Hz
Explanation:
In a generator, the maximum induced emf is given by

where
N is the number of turns in the coil
A is the area of the coil
B is the magnetic field strength
f is the frequency
In this problem, we have
N = 200


B = 0.030 T
So we can re-arrange the equation to find the frequency of the generator:

D kinetic energy✨
nnnnnnnnnnnnbbbhhbbbbbbb
Answer:
induced EMF = 240 V
and by the lenz's law direction of induced EMF is opposite to the applied EMF
Explanation:
given data
inductance = 8 mH
resistance = 5 Ω
current = 4.0 A
time t = 0
current grow = 4.0 A to 10.0 A
to find out
value and the direction of the induced EMF
solution
we get here induced EMF of induction is express as
E = - L
...................1
so E = - L 
put here value we get
E = - 8 ×

E = -40 × 6
E = -240
take magnitude
induced EMF = 240 V
and by the lenz's law we get direction of induced EMF is opposite to the applied EMF