Answer:
The value is 
Explanation:
From the question we are told that
The volume of liquid nitrogen is 
The density of nitrogen at gaseous form is
= The dry air at sea level
Generally the density of nitrogen at liquid form is

And this is mathematically represented as

=> 
Now the density of gaseous nitrogen is

=> 
Given that the mass is constant


=> 
Answer:
When a patient has a chipped tooth, it means that a small portion of their tooth is no longer there. Chipped teeth are one of the more common types of dental problems that general dentists deal with. However, chipped teeth do not grow back on any portion of a tooth and instead need to be repaired by a general dentist.
Hope this helped <3
The speed of the brick dropped by the builder as it hits the ground is 17.32m/s.
Given the data in the question;
Since the brick was initially at rest before it was dropped,
- Initial Velocity;

- Height from which it has dropped;

- Gravitational field strength;

Final speed of brick as it hits the ground; 
<h3>Velocity</h3>
velocity is simply the same as the speed at which a particle or object moves. It is the rate of change of position of an object or particle with respect to time. As expressed in the Third Equation of Motion:

Where v is final velocity, u is initial velocity, h is its height or distance from ground and g is gravitational field strength.
To determine the speed of the brick as it hits the ground, we substitute our giving values into the expression above.

Therefore, the speed of the brick dropped by the builder as it hits the ground is 17.32m/s.
Learn more about equations of motion: brainly.com/question/18486505
Im pretty sure it’s A eye