Answer:
The attractive force is negative and MgO has a higher melting point
Explanation:
From Couloumb's law:
Energy of interaction, E = k 
where q1 and q2 are the charges of the ions, k is Coulomb's constant and r is the distance between both ions, i.e the atomic radii of the ions.
If you look at Coulomb's law, you note that in the force is negative (because q1 is negative while q2 is positive).
In addition to that, the compounds MgO and NaF have similar combined ionic radii, then we can determine the melting point trend from the amount of energy gotten
The melting point of ionic compounds is determined by 1. charge on the ions 2. size of ions. while NaF has smaller charges (+1 and -1), MgO (+2 and -2) has larger charges and greater combined atomic radii. This implies that the compound with greater force would have a higher melting point.
Hence the compound MgO would have a higher melting point than NaF.
<span>Select the block of cells to be included in the scatter plot by clicking and dragging, then from the Insert ribbon under Chart drop down the Scatter or Bubble menu and select Scatter. A chart will appear on the spreadsheet.
</span><span>
To set up a scatter plot in Excel, enter the pairs of data in two columns with each value of a pair on the same row. By default, Excel considers the column on the left to contain the horizontal (X) values and the column on the right to contain the vertical (Y) values.
</span><span>If you click on the + sign at the upper right of the chart, a list of checkboxes will appear. Check Axes, Axis Titles, and Trendline. Uncheck everything else. You should edit the Axis Titles to include the name of the factor and any units associated with it. Double-click on the Axis numbers to bring up the Format Axis dialog, then click on the bar-graph icon to access Axis Options. Set the bounds and units appropriately and set the tick marks to something sensible.</span><span>
</span>
Crystal field splitting is the difference in energy between d orbitals of ligands. Crystal field splitting number is denoted by the capital Greek letter Δ. Crystal field splitting explains the difference in color between two similar metal-ligand complexes.
<h3>What is crystal field splitting of d-orbitals?</h3>
The splitting of fivefold degenerate d orbitals of the metal ion into two levels in a tetrahedral crystal field is the representation of two sets of orbitals as Td. The electrons in dx2-y2 and dz2 orbitals are less repelled by the ligands than the electrons present in dxy, dyz, and dxz orbitals.
<h3>Which of the following factors affect crystal field splitting energy?</h3>
There are the following factors that affect the crystal field splitting. These are the nature of ligands, coordination number, arrangement of ligand, size of a metal atom, charge on the metal atom, size of ligands, electronegativity, and interatomic distance.
Learn more about crystal field splitting here:
<h3>
brainly.com/question/13004475</h3>
<h3>#SPJ4</h3>