Answer:

Explanation:
Translation:
- <em>What volume will 12g of iron occupy?</em>
<em></em>
<h2>Solution</h2>
<em />
<em>Iron</em> is a solid substance at room temperature. You can find the <em>volume</em> of solids (and of not solids) using the density.

You can obtaindthe density of most pure substances in the internet. The density of<em> iron</em> at room temperature is 7.874 g/cm³.
Thus, substituting in the formula, you get:

The answer is rounded to two significant figures because the input, 12g, has two significant figures.
Answer:
The correct option is <em>A) The light moths will be captured by predators more easily than the dark moths, and the population of dark moths will rise.</em>
Explanation:
As we can see, the colour of the trees do not match with the light moths. Instead, the colour of the trees resembles the dark moths. This adaptation will work best for the dark moths to protect it from its predators. The light moths lack this adaptation and can easily be attacked by the predators. Hence, the population of the dark moth will increase as they are better adapted to live in such an environment.
Answer:
pH of HNO₃ having an hydrogen ion concentration of 0.71M is 0.149
Explanation:
HNO₃ (aqueous) ⇄ H⁺ + NO3⁻
The pH is defined as the negative log of the hydrogen ion concentration
pH = - log [H⁺]
From the question, the hydrogen ion concentration is given as 0.71M, therefore
pH = -log [0.71]
= 0.149
Answer:
The mass of the jar and contents remained the same after the metal was burned.
Explanation:
My prediction about the experimental results is that the mass of the jar and contents remained the same after the metal was burned in the jar.
This is compliance with the law of conservation of mass which states that in a chemical reaction, matter is neither created nor destroyed by bonds are rearranged for new compounds to form.
- In compliance with this law, it is expected that the mass of the jar and its content will remain the same before and after the reaction.
- No new material was added and no material was removed from the jar.