1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anon25 [30]
3 years ago
15

Lets Try This: study the pictures. Describe what you see and think about it. write your answer on a sheet of paper. home room

Engineering
1 answer:
Yuliya22 [10]3 years ago
4 0

Answer: I see three children cleaning the lawn while one of them are raking the leaves and one is holding a dust pan. The other child is holding a bucket. On the other picture, i see a young boy watering plants.

BTW: these pictures are not very clear so answers may vary.

Explanation:

You might be interested in
If a plus sight of 12.03 ft is taken on BM A, elevation 312.547 ft, and a minus sight of 5.43 ft is read on point X, calculate t
DochEvi [55]

Answer:

Therefore, height of instrument is 324.577 ft

Therefore, elevation of point x is 330 m

Explanation:

Given that

Plus sight on BM = 12.03 ft

Minus sight is = 5.43 ft

Elevation = 312.547 ft

Height of instrument is H.I

H.I = elevation on bench mark + plus sight

    =  312.547 + 12.03 = 324.577 ft

Therefore, height of instrument is 324.577 ft

Elevation at point x is = H.I - minus sight

                                    = 324.577 - (- 5.43)

                                     = 330.00 m

Therefore, elevation of point x is 330 m

3 0
4 years ago
Of the children who die in car crashes, how many of them die due to an improper restraint system (or even just not being buckled
Lina20 [59]

Answer:

you died

Explanation:

8 0
3 years ago
Pendulum impacting an inclined surface of a block attached to a spring-Dependent multi-part problem assign all parts NOTE: This
Art [367]

Answer:

vA = -2.55 m/s

vB = 0.947 m/s

Explanation:

Given:-

- The initial angle of rope, α = 30°

- The angle of rope just before impact or wedge angle, θ = 20°

- The weight of sphere, Ws = 1-lb

- The initial position velocity, vi = 4 ft/s

- The coefficient of restitution, e = 0.7

- The weight of the wedge, Ww = 2-lb

- The spring constant, k = 1.8 lb/in

- The length of rope, L = 2.6 ft

Find:-

 Determine the velocities of A and B immediately after the impact.

Solution:-

- We can first consider the ball ( acting as a pendulum ) to be isolated for study.

- There are no unbalanced fictitious forces acting on the sphere ball. Hence, we can reasonably assume that the energy is conserved.

- According to the principle of conservation for the initial point and the point just before impact.

Let,

              vA : The speed of sphere ball before impact

               

                  Change in kinetic energy = Change in potential energy

                  ΔK.E = ΔE.P

                  0.5*ms* ( uA^2 - vi^2 ) = ms*g*L*( cos ( θ ) - cos ( α ) )

                  uA^2 = 2*g*L*( cos ( θ ) - cos ( α ) ) + vi^2

                  uA = √ [ 2*32*2.6*( cos ( 20 ) - cos ( 30 ) ) + 4^2 ] = √28.25822

                  uA = 5.316 ft/s

- The coefficient of restitution (e) can be thought of as a measure of the extent to which mechanical energy is conserved when an object bounces off a surface:

                 e^2 = ( K.E_after impact / K.E_before impact )

- The respective Kinetic energies are:

               

                K.E_after impact = K.E_sphere + K.E_block

                                             = 0.5*ms*vA^2 + 0.5*mb*vB^2

                K.E_before impact = K.E = Ws*L*( cos ( θ ) - cos ( α ) )

                                                         = 1*2.6*( cos ( 20 ) - cos ( 30 ) )

                                                         = 0.1915 J

                32*2*0.1915*0.7^2 = Ws*vA^2 + Wb*vB^2  

                6.00544 = vA^2 + 2*vB^2  ... Eq1

- From conservation of linear momentum we have:

                vB = e*( uA - uB )*cos ( 20 ) + vA

                vB = 0.7*( 5.316 - 0 )*cos ( 20)   + vA

                vB = 3.49678 + vA  .... Eq 2

- Solve two equation simultaneously:

               

               6.00544 = vA^2 + 2*(3.49678 + vA)^2

               6.00544 = 3vA^2 + 13.98*vA + 24.455

               3vA^2 + 14.8848*vA + 18.4495 = 0

               vA = -2.55 m/s

               vB = 0.947 m/s

                                 

5 0
4 years ago
Select the correct answer. Sean is a recent engineering graduate who has joined a new company. Read the profiles of his colleagu
PSYCHO15rus [73]

Answer:

giving advertising to the governor with the state

4 0
3 years ago
Calculate the amount of current flowing through a 75-watt light bulb that is connected to a 120-volt circuit in your home.
vodomira [7]

Answer:

I = 0.625 A

Explanation:

Given that,

Power of the light bulb, P = 75 W

Voltage of the circuit, V = 120 V

We need to find the current flowing through it. We know that, Power is given by :

P=V\times I

I is the electric current

I=\dfrac{P}{V}\\\\I=\dfrac{75\ W}{120\ V}\\\\I=0.625\ A

So, the current is 0.625 A.

5 0
3 years ago
Other questions:
  • A discrete MOSFET common-source amplifier has RG = 2 MΩ, gm = 5 mA/V, ro = 100 kΩ, RD = 20kΩ, Cgs = 3pF, and Cgd = 0.5pF. The am
    15·1 answer
  • For each topic, find the total number of blurts that were analyzed as being related to the topic. Order the result by topic id.
    6·1 answer
  • Cooling fans can be controlled by
    13·1 answer
  • Calculate the modulus of elasticity of carbon-epoxy composite under isostraincondition if thecomposite consists of 40% carbon fi
    12·1 answer
  • Which one is an example of a digital input?
    5·1 answer
  • Identify the part of the direct current motor​
    9·1 answer
  • A PLL is set up so that its VCO free-runs at 8.9 MHz. The VCO does not change frequency unless its input is within plus or minus
    11·1 answer
  • Consider an infinite lattice with coordination number z in which every site is occupied by a molecule. (As a reminder, the coord
    5·1 answer
  • Describe two fundamental reasons why flexural strength should depend on porosity
    14·1 answer
  • If you measure the voltage across a diode and it measures 0.3 V, the diode is probably made of __________ and is __________ bias
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!