The question is incomplete. The complete question is :
To measure the effective coefficient of friction in a bone joint, a healthy joint (and its immediate surroundings) can be removed from a fresh cadaver. The joint is inverted, and a weight is used to apply a downward force F⃗ d on the head of the femur into the hip socket. Then, a horizontal force F⃗ h is applied and increased in magnitude until the femur head rotates clockwise in the socket. The joint is mounted in such a way that F⃗ h will cause clockwise rotation, not straight-line motion to the right. The friction force will point in a direction to oppose this rotation.
Draw vectors indicating the normal force n⃗ (magnitude and direction) and the frictional force f⃗ f (direction only) acting on the femur head at point A.
Assume that the weight of the femur is negligible compared to the applied downward force.
Draw the vectors starting at the black dot. The location, orientation and relative length of the vectors will be graded
Solution :
The normal force represented by N is equal to the downward force, which is equal in magnitude but it is opposite in direction.
Also the frictional force acts always to oppose the motion because the bone starts moving in a clockwise direction. The frictional force that will be applied to the right direction so that the movement or the rotation at A is opposed.
Answer:
mechanical layers of the earth
Lithosphere
-Asthenosphere
-Mesosphere
-Outer Core
-Inner Core
Chemical layers of the earth:
-Crust
-Mantle
-Core
I hope this helps :)
Answer:
Here are some examples of tropism in plants : Sunflowers are one of the best examples of positive phototropism , as they always grow facing the sun.
Explanation:
Although some experts consider that perhaps such a clear growth movement should not be considered tropism.
Explanation:
LD₁ = 10⁵ mm⁻²
LD₂ = 10⁴mm⁻²
V = 1000 mm³
Distance = (LD)(V)
Distance₁ = (10⁵mm⁻²)(1000mm³) = 10×10⁷mm = 10×10⁴m
Distance₂ = (10⁹mm⁻²)(1000mm³) = 1×10¹² mm = 1×10⁹ m
Conversion to miles:
Distance₁ = 10×10⁴ m / 1609m = 62 miles
Distance₂ = 10×10⁹m / 1609 m = 621,504 miles.