Answer:

Explanation:
The electric flux is defined as the multiple of electric field and the area that the electric field passes through, such that

When calculating the electric flux, the angle between the directions of electric field and the area becomes important, especially if the angle is changing with time.
The above formula can be rewritten as follows

where θ is the angle between the electric field and the area of the loop. Note that, the direction of the area of the loop is perpendicular to the plane of the loop.
If the loop is rotating with constant angular velocity ω, then the angle can be written as follows

At t = 0, cos(0) = 1 and the electric flux through the loop is at its maximum value.
Therefore the electric flux can be written as a function of time

Answer:
In the electric field, the like charges repel each other, and the unlike charges attract each other, whereas in a magnetic field the like poles repel each other and the unlike poles attract each other.
Explanation:
Answer:
0.000234 seconds
Explanation:
Since the row is 0.15m, its radius of rotation must be 0.15 / 2 = 0.075 m
We can start by calculating the angular speed of the rod:
Since one revolution equals to 2π rad. The speed in revolution per second must be
26800 / 2π = 4265 revolution/s
The number of seconds per revolution, or period, is the inverse:
1/4265 = 0.000234 seconds
1) The correct answer is
<span>C) The particles are not able to move out of their positions relative to one another, but do have small vibrational movements.
In solids, in fact, particles are bound together so they cannot move freely. However, they can move around their fixed position with small vibrational movements, whose intensity depends on the temperature of the substance (the higher the temperature, the more intense the vibrations). For this reason, we say that matter moves also in solid state.
2) The correct answer is
</span><span>A) increase the concentration of both solutions
In fact, when we increase the concentration of both solutions, we increase the number of particles that react in both solutions; as a result, the speed of the reaction will increase.
3) The correct answer is
</span><span>C) gas → liquid → solid
In gases, in fact, particles are basically free to move, so the intermolecular forces of attraction are almost negligible. In liquids, particles are still able to move, however the intermolecular forces of attraction are stronger than in gases. Finally, in solids, particles are bound together, so they are not free to move and the intermolecular forces of attraction are very strong. </span>
Answer:
The difference between the cost of operating LED and incandescent bulb is $5.1
Explanation:
We are given the cost of electricity that is 12.75 cents per kWh. We want to find out the difference in the operating cost of an incandescent and LED bulb for a time period of 2,000 hours.
Since we are not given the rating of the incandescent bulb and LED bulb, we will assume their ratings.
For a light intensity of 250 Lumens;
The average rating of an LED bulb is approximately 5 Watts.
The average rating of an incandescent bulb is approximately 25 Watts.
Now lets find out the kWh of each bulb.
Energy = Power×Time
For LED bulb:
E = 5×2,000 = 10,000 Wh
Divide by 1000 to convert into kWh
E = 10,000/1000 = 10 kWh
Cost = 12.75×10 = 127.5 cents
Cost = $1.27
For Incandescent bulb:
E = 25×2,000 = 50,000 Wh
Divide by 1000 to convert into kWh
E = 50,000/1000 = 50 kWh
Cost = 12.75×50 = 637.5 cents
Cost = $6.37
Difference in Cost:
Difference = $6.37 - $1.27 = $5.1
Therefore, the difference between the cost of operating LED and incandescent bulb is $5.1.