Answer:
See explanation and picture below
Explanation:
First, in the case of methyloxirane (Also known as propilene oxide) the mechanism that is taking place there is something similar to a Sn2 mechanism. Although a Sn2 mechanism is a bimolecular substitution taking place in only step, the mechanism followed here is pretty similar after the first step.
In both cases, the H atom of the HBr goes to the oxygen in the molecule. You'll have a OH⁺ in both. However, in the case of methyloxirane the next step is a Sn2 mechanism step, the bromide ion will go to the less substitued carbon, because the methyl group is exerting a steric hindrance. Not a big one but it has a little effect there, that's why the bromide will rather go to the carbon with more hydrogens. and the final product is formed.
In the case of phenyloxirane, once the OH⁺ is formed, the next step is a Sn1 mechanism. In this case, the bond C - OH⁺ is opened on the side of the phenyl to stabilize the OH. This is because that carbon is more stable than the carbon with no phenyl. (A 3° carbon is more stable than a 2° carbon). Therefore, when this bond opens, the bromide will go there in the next step, and the final product is formed. See picture below for mechanism and products.
c well actually I remember being tought this but I cant remember it 100
Isotopes of elements have same atomic numbers and different mass number(atomic masses).
Room temperature has the highest viscosity
Answer:
For these problems, we need to compare the theoretical yield that we'd get from performing stoichiometry to the actual yield stated in the problem. % yield is the actual yield/theoretical yield x 100%
Cu + 2 AgNO₠→ Cu(NOâ‚)â‚‚ + 2 Ag ==> each mole of copper yields two moles of silver
12.7-g Cu x ( 1 mol Cu /63.5-g Cu) x ( 2 mol Ag / 1 mol Cu) x (108-g Ag / 1 mol Ag) = 43.2-g Ag. This is the theoretical yield. Now, since we got 38.1-g Ag our % yield is:
38.1-g/43.2-g x 100% = 88.2%
Explanation: