Answer:
Explanation:
When a spring attached with a block is stretched and released , the block starts moving under SHM. The elastic energy stored in it initially at the time of initial stretch is repeatedly converted into kinetic energy and vice - versa while the body keeps moving under SHM. So we can tell that the mechanical energy of the system remains constant.
In the whole process the velocity of the body keeps changing in terms of both magnitude and direction . It happens because a variable force acts on the body constantly towards the equilibrium point so its momentum also keeps changing all the time
Potential means position in science
Answer:
2.35 m/s²
Explanation:
Given that
Mass of the smaller crate, m₁ = 21 kg
Mass of the larger crate, m₂ = 90 kg
Tensión of the rope, T = 261 N
We know that the sum of all forces for the two objects with a force of friction F and a tension T are:
(i) m₁a₁ = F
(ii) m₂a₂ = T - F, where m and a are the masses and accelerations respectively.
1) no sliding can also mean that:
a₁ = a₂ = a
This makes us merge the two equations written above together as:
m₂a = T - m₁a
If we then solve for a, we would have something like this
a = T / (m₁+m₂)
a = 261 / (21 + 90)
a = 261 / 111
a = 2.35 m/s²
Therefore, the needed acceleration of the small crate is 2.35 m/s²
Answer:
gggggggggggggggggggggggggggggggggg
Explanation:
Answer:
b. 0.45 meters
Explanation:
Given the following data;
Spring constant, k = 330 N/m
Force = 150 N
To find the extension of the spring;
Mathematically, the force exerted on a spring is given by the formula;
Force = spring constant * extension
Substituting into the formula, we have;
150 = 330 * extension
Extension, e = 150/330
Extension, e = 0.45 meters