They should identify the confounding variable.
Some condition that is not examined by the scientist might alter the experiment result. That condition is called confounding variable. If the method of the experiment same but result is very different, there should be unidentified confounding variable. It could be air humidity, temperature, ventilation, light, time of the year or anything that might not be seen by naked eye.
Try to redo the experiment with controlling variable as much as possible.
The molar mass of CO2 can be calculated as follows;
CO2 — 12 + (16x2) = 12+ 32 = 44 g
Therefore molar mass of CO2 is 44 g/mol
In 44 g of CO2 there’s 1 mol of CO2
Then 1 g of CO2 there’s 1/44 mol of CO2
Therefore in 78.3 g of CO2 there’s — 1/44 x 78.3 =1.78 mol of CO2
1) Left up: a chemical change. We can see new substance (red-blue) is formed from one blue and one red atom.
In chemical change new substances are formed, the atoms are rearranged and the reaction is followed by an energy change.
2) Left down: a chemical change. We can see new substance (red-blue) is formed from two blue and one red atoms.
3) MIddle: a physical change. There is no new substance. Bonds are not broken.
4) Right up: a chemical change. Bonds are broken.
5) Right down: a physical change. Change of state of matter.
Answer:
If you continue to cool water past 4 degrees Celsius, its density starts to plummet (you can see this in the graph). At zero degrees, i.e., the temperature at which water turns into ice, the density of water is actually quite low. It turns out that ice has a lower density than water, and any object that has a lower density than the liquid form on which it’s kept (in this case, water) will be able to float!
Explanation: