Answer:
E.
Explanation:
In a galvanic cell, electrons flow from the anothe to the cathode.
I hope you got the answer
See the attached picture for answers
Answer:
The correct answer is B
Explanation:
Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity
Φ
= ∫ E. dA =
/ ε₀
For this case we create a Gaussian surface that is a sphere. We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product
∫ E dA =
/ ε₀
The area of a sphere is
A = 4π r²
E 4π r² =
/ ε₀
E = (1 /4πε₀
) q / r²
Having the solution of the problem let's analyze the points:
A ) r = 3R / 4 = 0.75 R.
In this case there is no charge inside the Gaussian surface therefore the electric field is zero
E = 0
B) r = 5R / 4 = 1.25R
In this case the entire charge is inside the Gaussian surface, the field is
E = (1 /4πε₀
) Q / (1.25R)²
E = (1 /4πε₀
) Q / R2 1 / 1.56²
E₀ = (1 /4π ε₀
) Q / R²
= Eo /1.56
²
= 0.41 Eo
C) r = 2R
All charge inside is inside the Gaussian surface
=(1 /4π ε₀
) Q 1/(2R)²
= (1 /4π ε₀
) q/R² 1/4
= Eo 1/4
= 0.25 Eo
D) False the field changes with distance
The correct answer is B
1140x9.8x2.4= 26,812.8 significant figures Make it 27,000
Answer:
about 602 milliseconds
Explanation:
The motion can be approximated by the equation ...
y = -4.9t^2 -22.8t +15.5
where t is the time since the arrow was released, and y is the distance above the ground.
When y=0, the arrow has hit the ground.
Using the quadratic formula, we find ...
t = (-(-22.8) ± √((-22.8)^2 -4(-4.9)(15.5)))/(2(-4.9))
= (22.8 ± √823.64)/(-9.8)
The positive solution is ...
t ≈ 0.60195193
It takes about 602 milliseconds for the arrow to reach the ground.