Characteristic properties can be used to describe and identify the substances, while non-characteristic properties, although can be used to describe the substances, cannot be used to identify them.
Temperature, mass, color, shape and volume are examples of non-characteristic properties.
Density, boiling point, melting point, chemical reactivity are examples of characteristic properties.
List of the properties observed by the scientist:
-----------------------------------------------------------------
Property Type of property
----------------------------------------------------------------
Volume: 5 ml non-characteristic
----------------------------------------------------------------
Color: blue non-characteristic
----------------------------------------------------------------
State: liquid characteristic
------------------------------------------------------------
density: 1.2 g/cm characteristic
------------------------------------------------------------
Reaction: reacts with CO2 characteristic
----------------------------------------------------------
Answer:
theory is diffrent from law
Explanation:
a Theory can never be proven to be true nd a law can usually be expressed
Answer:
Qm = -55.8Kj/mole
Explanation:
NaOH(aq) + HNO₃(aq) => NaNO₃(aq) + H₂O(l)
Qm = (mc∆T)water /moles acid
Given => 100ml(0.300M) NaOH(aq) + 100ml(0.300M)HNO₃(aq)
=> 0.03mole NaOH(aq) + 0.03mole HNO₃(aq)
=> 0.03mole NaNO₃(aq) + 0.03mole H₂O(l)
ΔH⁰rxn = [(200ml)(1.00cal/g∙°C)(37 – 35)°C]water / 0.03mole HNO₃
= 13,333 cal/mole x 4.184J/cal = 55,787J/mol = 55.8Kj/mole (exothermic)*
Heat of reactions comes from formation of H-Oxy bonds on formation of water of reaction and heats the 200ml of solvent water from 35⁰C to 37⁰C.
Answer:
What are the advantages of titration?
Titrimetric analysis commonly referred to as volumetric analysis offers distinct advantages over cumbersome gravimetric methods:
Speed of analysis.
Instantaneous completion of reactions.
Greater accuracy due to minimization of material loss involved in decanting, filtration, precipitation or similar operations.
Explanation:
Disadvantages
It is a destructive method often using up relatively large quantities of the substance being analysed.
It requires reactions to occur in a liquid phase, often the chemistry of interest will make this inappropriate.
It can produce significant amounts of chemical waste which has to be disposed of.
It has limited accuracy.
<em>hope </em><em>this </em><em>helps </em><em>Plea</em><em>se</em><em> </em><em>inform</em><em> </em><em>me</em><em> </em><em>if</em><em> </em><em>its</em><em> </em><em>help</em><em>ful</em><em> </em>
Answer:
13.7 moles of O₂ are needed
Explanation:
In order to find the moles of reactants that may react to make the products we need to determine the reaction:
Reactants are hydrogen and oxygen
Product: Water
2 moles of hydrogen can react to 1 mol of oxygen and produce 2 moles of water.
Balanced reaction: 2H₂(g) + O₂(g) → 2H₂O(l)
If 2 moles of hydrogen need 1 mol of oxygen to react
Therefore, 27.4 moles of H₂ must need (27.4 .1) / 2 = 13.7 moles of O₂