The best use of an atomic model to explain the charge of the particles in Thomson's beams is:
<u>An atom's smaller negative particles are at a distance from the central positive particles, so the negative particles are easier to remove.</u>
<u>Explanation:</u>
In Thomson's model, an atom comprises of electrons that are surrounded by a group of positive particles to equal the electron's negative particles, like negatively charged “plums” that are surrounded by positively charged “pudding”.
Atoms are composed of a nucleus that consists of protons and neutrons . Electron was discovered by Sir J.J.Thomson. Atoms are neutral overall, therefore in Thomson’s ‘plum pudding model’:
-
atoms are spheres of positive charge
- electrons are dotted around inside
Thomson's conclusions made him to propose the Rutherford model of the atom where the atom had a concentrated nucleus of positive charge and also large mass.
<span>As per the second law of thermodynamics, when the energy gets converted from one form to another in a physical or chemical change, then the energy which we get as result of change is of lower quality or usability of such energy is less.</span>
Answer:
<h3>The answer is 1600 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 200 kg
velocity / speed = 8m/s
We have
momentum = 200 × 8
We have the final answer as
<h3>1600 kgm/s</h3>
Hope this helps you
B. gas has no definite shape or volume. liquid has definite volume but no definite shape