Answer:
0.0072 m³/s
Explanation:
Using Bernoulli's law
P₁ + 1/2ρv₁² = P₂ + 1/2ρv₂ since the pipe is horizontal
1/2ρv₂² - 1/2ρv₁² = P₁ - P₂
flow rate is constant
A₁v₁ = A₂v₂
A₁ = πr₁² = π (0.06/2)² = 0.0028278 m²
A₂ = πr₂² = π (0.0225)² = 0.00159 m²
v₁ = (A₂ / A₁)v₂
v₁ = (0.00159 m²/ 0.0028278 m²) v₂ = 0.562 v₂
substitute v₁ into the Bernoulli's equation
1/2ρv₂² - 1/2ρv₁² = P₁ - P₂
500 ( 1 - 0.3161 ) v₂² = (31.0 - 24 ) × 10³ Pa
341.924 v₂² = 7000
v₂² = 20.472
v₂ = √ 20.472 = 4.525 m/s
volume follow rate = 0.00159 m² × 4.525 m/s = 0.0072 m³/s
<span>The time needed for a wave to make one complete cycle is its period.</span>
Answer:
1.0×10³ N
Explanation:
μs is the static coefficient of friction. That's the friction that acts on a stationary (non-moving) object when being pushed or pulled.
μk is the kinetic coefficient of friction. That's the friction that acts on a moving object.
To budge the pig (while it's still stationary), we need to overcome the static friction.
F = N μs
For a non-moving object on level ground, the normal force N equals the weight.
F = mg μs
Given m = 130 kg and μs = 0.80:
F = (130 kg) (9.8 m/s²) (0.80)
F = 1019.2 N
Rounded to two significant figures, the force needed to budge the pig is 1.0×10³ N.