Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion.Displacement<span> is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.
</span>To calculate displacement<span>, simply draw a vector from your starting point to your final position and solve for the length of this line. If your starting and ending position are the same, like your circular 5K route, then your </span>displacement<span> is 0. In physics, </span>displacement<span> is represented by Δs.
For me to solve this I would need to know the time, but I can give you a handy displacement calculator I used that helped me.
https://www.easycalculation.com/physics/classical-physics/constant-acc-displacement.php
Hope I helped.
</span>
Answer:
300 m/s
Explanation:
The difference in time between the two bangs is 1 s.
Thus;
t2 - t1 = 1
We know that distance/time = speed.
Thus;
d2/v - d1/v = 1
Multiply through by v to get;
d2 - d1 = v
Where v is speed of sound in air.
d1 = 350 m
d2 = (150 × 2) + 350 = 650 m
Thus;
v = d2 - d1 = 650 - 350 = 300 m/s
Alike because they both act on the quarks making up the nucleons and they have very short ranges. The Strong Nuclear Force is an attractive force between protons and neutrons that keep the nucleus together and the Weak Nuclear Force is responsible for the radioactive decay of certain nuclei. Which also makes them very different
Answer:
the final kinetic energy is 0.9eV
Explanation:
To find the kinetic energy of the electron just after the collision with hydrogen atoms you take into account that the energy of the electron in the hydrogen atoms are given by the expression:

you can assume that the shot electron excites the electron of the hydrogen atom to the first excited state, that is
![E_{n_2-n_1}=-13.6eV[\frac{1}{n_2^2}-\frac{1}{n_1^2}]\\\\E_{2-1}=-13.6eV[\frac{1}{2^2}-\frac{1}{1}]=-10.2eV](https://tex.z-dn.net/?f=E_%7Bn_2-n_1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7Bn_2%5E2%7D-%5Cfrac%7B1%7D%7Bn_1%5E2%7D%5D%5C%5C%5C%5CE_%7B2-1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B1%7D%5D%3D-10.2eV)
-10.2eV is the energy that the shot electron losses in the excitation of the electron of the hydrogen atom. Hence, the final kinetic energy of the shot electron after it has given -10.2eV of its energy is:

Supernova nucleosynthesis is also thought to be responsible for the creation of rarerelements heavier than iron<span> and nickel, in the last few seconds of a type II supernova event.</span>