alumunum and oxygon with 2 Al atoms and 3 oxygen atoms make alumunum trioxide hope i went full god mode right there
Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.
Solving part-1 only
#1
KMnO_4
- Transition metal is Manganese (Mn)
#2
Actually it's the oxidation number of Mn
Let's find how?
- x is the oxidation number
#3
- Purple as per the color of potassium permanganate
#4
To name this Alkyne, simply count from the direction that will give the lowest starting number to appear at the beginning of the carbon triple bond.
If you were to count from the top of the chain, the position of the carbon next to the triple bond would be 4. Yet if you count from the bottom chain going left to right and above the chain, the position of the carbon next to the triple bond would be 3.
Then identify the groups that are connected off the parent chain, here we have a methyl group on carbon 2.
Thus the name would be 2 - methyl - 3 - heptyne. I believe.