Answer:
The balloon becomes inflated
Explanation:
The equation of the reaction between baking soda (sodium bicarbonate) and vinegar(ethanoic acid) is shown below;
NaHCO3 + HC2CH3O2 ------> NaC2H3O2 + H2O + CO2
The gas (CO2) evolved in the process leads to the inflation of the balloon dropped on the bottle in which the reaction is taking pace.
This observation provides evidence that a gas was really evolved in the reaction.
<u>Answer:</u> The amount of water required to prepare given amount of salt is 398.4 mL
<u>Explanation:</u>
To calculate the volume of solution, we use the equation used to calculate the molarity of solution:

We are given:
Molarity of solution = 0.16 M
Given mass of manganese (II) nitrate tetrahydrate = 16 g
Molar mass of manganese (II) nitrate tetrahydrate = 251 g/mol
Putting values in above equation, we get:

Volume of water = Volume of solution = 398.4 mL
Hence, the amount of water required to prepare given amount of salt is 398.4 mL
Both sides of the equation would be equal.
Hope This Helps You!
Explanation:
Atomic number of magnesium is 12 and its electronic distribution is 2, 8, 2. On the other hand, atomic number of iodine is 53 and its electronic configuration is
.
Hence, there are 7 valence electrons in an iodine atom and there are 2 valence electrons in a magnesium atom.
So, one atom of iodine requires one electron from a donor atom to complete its octet. But one magnesium atom contains two valence electrons.
Therefore, one magnesium atom will combine with two iodine atoms to result in the formation of magnesium iodide as follows.

Therefore, an ionic bond will be formed when magnesium reacts with iodine to make magnesium iodide.
Answer:
2 mol H₂O
Explanation:
With the reaction,
- 2H₂(g) + O₂(g) → 2 H₂O(g)
1.55 moles of O₂ would react completely with ( 2*1.55 ) 3.1 moles of H₂. There are not as many moles of H₂, thus H₂ is the limiting reactant.
Now we <u>calculate the moles of H₂O produced</u>, <em>starting from the moles of limiting reactant</em>:
- 2.00 mol H₂ *
= 2 mol H₂O