The EMF of the battery includes the force to to drive across its internal resistance. the total resistance:
R = internal resistance r + resistance connected rv
R = r + rv
Now find the current:
V 1= IR
I = R / V1
find the voltage at the battery terminal (which is net of internal resistance) using
V 2= IR
So the voltage at the terminal is:
V = V2 - V1
This is the potential difference vmeter measured by the voltmeter.
I think in parallel circuits.
1750 meters.
First, determine how long it takes for the kit to hit the ground. Distance over constant acceleration is:
d = 1/2 A T^2
where
d = distance
A = acceleration
T = time
Solving for T, gives
d = 1/2 A T^2
2d = A T^2
2d/A = T^2
sqrt(2d/A) = T
Substitute the known values and calculate.
sqrt(2d/A) = T
sqrt(2* 1500m / 9.8 m/s^2) = T
sqrt(3000m / 9.8 m/s^2) = T
sqrt(306.122449 s^2) = T
17.49635531 s = T
Rounding to 4 significant figures gives 17.50 seconds. Since it will take
17.50 seconds for the kit to hit the ground, the kit needs to be dropped 17.50
seconds before the plane goes overhead. So just simply multiply by the velocity.
17.50 s * 100 m/s = 1750 m
Answer:
Explanation:
given,
diameter of merry - go - round = 2.40 m
moment of inertia = I = 356 kg∙m²
speed of the merry- go-round = 1.80 rad/s
mass of child = 25 kg
initial angular momentum of the system
final angular momentum of the system
from conservation of angular momentum