Answer:
Explanation:
I is the moment of inertia of the pulley, α is the angular acceleration of the pulley and T is the tension in the rope. Let a is the linear acceleration.
The relation between the linear acceleration and the angular acceleration is
a = R α .... (1)
According to the diagram,
T x R = I x α
T x R = I x a / R from equation (1)
T = I x a / R² .... (2)
mg - T = ma .... (3)
Substitute the value of T from equation (2) in equation (3)


T is the acceleration in the system
Substitute the value of a in equation (2)


This is the tension in the string.
Answer:
(a) 7 m
(b) 1 m
Explanation:
Given:
The magnitude of displacement vector 'a' is 3 m
The magnitude of displacement vector 'b' is 4 m.
The vector 'c' is the vector sum of vectors 'a' and 'b'.
(a)
Now, when the angle between the vectors is 0°, it means that the vectors are in the same direction. When vectors are in the same direction, then their resultant magnitude is simply the sum of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in same direction is given as:

Therefore, the magnitude of vector 'c' is 7 m when angle between 'a' and 'b' is 0°.
(b)
When the angle between the vectors is 180°, it means that the vectors are exactly in the opposite direction. When the vectors are in opposite direction, then their resultant magnitude is the subtraction of their magnitudes.
So, magnitude of 'c' when 'a' and 'b' are in opposite direction is:

Therefore, the magnitude of vector 'c' is 1 m when angle between 'a' and 'b' is 180°.
Answer:
y is doubled
Explanation:
If x is halved, that means the value is doubled. Here is an exmaple:
y=1/2. If the denominater is doubled, y would equal y=1/1. So, the value of y has doubled from 0.5 to 1. Therefore, if the denominator is halved, the solution will be doubled.
joji sanctuary
slow dancing in the dark
happier by olivia
filipino artist like john cena
No, you would aim slightly above, because when you throw the spear and it travels through the air it will fall slightly downwards by the time it reaches the fish.