Answer and explanation:
A.
Muon travelled straight down towards the earth. Therefore the tree moves up in the rest frame of muon (option a)
B.
In muon rest frame it travels Zero meters
C.
Distance, d = Velocity, v * Time, s
![where, v = 0.9c = 0.9 \times 8 \times 10^8 , s = 2.2 \mu s](https://tex.z-dn.net/?f=where%2C%20v%20%3D%200.9c%20%3D%200.9%20%5Ctimes%208%20%5Ctimes%2010%5E8%20%2C%20s%20%3D%202.2%20%5Cmu%20s)
![d = 0.9 \times 3 \times 10^8 \times 2.2 \times 10^{-6}\\\\d = 594m](https://tex.z-dn.net/?f=d%20%3D%200.9%20%5Ctimes%203%20%5Ctimes%2010%5E8%20%5Ctimes%202.2%20%5Ctimes%2010%5E%7B-6%7D%5C%5C%5C%5Cd%20%3D%20594m)
D.
Distance from the top of the mountain to the tree is the same as the distance travelled by the tree in the muons rest frame
that is same as in part C which is 594m
E.
Using lorentz contraction
In the rest frame of someone standing on the mountain
the distance is given by
![d' = \frac{d}{\gamma} = d\sqrt{1 - \frac{v^2}{c^2}}, where, \frac{1}{\gamma}= \sqrt{1 - \frac{v^2}{c^2}}](https://tex.z-dn.net/?f=d%27%20%3D%20%5Cfrac%7Bd%7D%7B%5Cgamma%7D%20%3D%20d%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%7D%2C%20where%2C%20%5Cfrac%7B1%7D%7B%5Cgamma%7D%3D%20%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%7D)
![d' = 594\sqrt{1 - \frac{(0.9c)^2}{c^2}}](https://tex.z-dn.net/?f=d%27%20%3D%20594%5Csqrt%7B1%20-%20%5Cfrac%7B%280.9c%29%5E2%7D%7Bc%5E2%7D%7D)
![d' = 594\sqrt{1 - 0.81}](https://tex.z-dn.net/?f=d%27%20%3D%20594%5Csqrt%7B1%20-%200.81%7D)
![d' = 594 \times 0.4359](https://tex.z-dn.net/?f=d%27%20%3D%20594%20%5Ctimes%200.4359)
d' = 258.92m
F.
in the rest frame of someone standing on the mountain,
muon moves straight down