Answer:
C₂H₂ + 3H₂ ⟶ 2CH₄
Explanation:
The initial concentrations are:
[CH₄] = 6.30 ÷ 6.00 = 1.05 mol·L⁻¹
[C₂H₂] = 4.20 ÷ 6.00 = 0.700 mol·L⁻¹
[H₂] = 11.15 ÷ 6.00 = 1.858 mol·L⁻¹
2CH₄ ⇌ C₂H₂ + 3H₂
I/mol·L⁻¹: 1.05 0.700 1.858
![Q = \dfrac{\text{[C$_{2}$H$_{2}$][H$_{2}$]}^{3}}{\text{[CH$_{4}$]}^{2}} = \dfrac{ 0.700\times 1.858^{3}}{1.05^{2}}= 4.07](https://tex.z-dn.net/?f=Q%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BC%24_%7B2%7D%24H%24_%7B2%7D%24%5D%5BH%24_%7B2%7D%24%5D%7D%5E%7B3%7D%7D%7B%5Ctext%7B%5BCH%24_%7B4%7D%24%5D%7D%5E%7B2%7D%7D%20%3D%20%5Cdfrac%7B%200.700%5Ctimes%201.858%5E%7B3%7D%7D%7B1.05%5E%7B2%7D%7D%3D%204.07)
Q > K
That means we have too many products.
The reaction will go to the left to get rid of the excess products.
C₂H₂ + 3H₂ ⟶ 2CH₄
Answer:
The lanthanides and actinides together are sometimes called the inner transition elements.
Explanation:
They are called this because they come up in the periodic table after actinium
Hope this helps :)
Answer:
4 moles
Explanation:
First, let's find the molar mass of AgCl. The molar mass of Ag is 107.87 and the molar mass of chlorine is 35.45 so the total mass is 107.87 + 35.45 = 143.32 grams per mole. Now all we need to calculate is 573.28 / 143.32 = 4 moles.
A method of procedure that has characterized natural sciences the 17th century, consisting in systematic observation, measurement, and experiments, and the formulation, testing, and modification of hypotheses.
Lithium
Li → Li⁺ + e⁻
Li 1s²2s¹ → Li⁺ 1s² + e⁻