Answer 1) When a strong acid like

reacts with

usually the equilibrium shifts to the right because
As per the Le chatelier's principle "if in any reaction, a dynamic equilibrium is disturbed by changing the any of the conditions, the position of equilibrium moves to counteract the change." So, in the given reaction when

reacts with

it generates carbon dioxide and water as a by product, if we are adding

it will remove some of the

molecule from the reaction mixture, which then tends to shift the equilibrium towards right.
Answer 2) The same would be observed in this case, if we replace

with HCl it will shift the equilibrium to the right as their will be generation of AgCl as the precipitate.
As per the definition of Le Chatelier's principle if we add reactants in the reaction the equilibrium will tend to move towards right, also if we replace the products or remove it then too it will shift the equilibrium towards right. So, in this reaction you are removing

and

ions from the solution.
Answer:
A. Treated water from the plant would affect communities downriver.
Explanation:
Answer:
This question appears incomplete
Explanation:
There is no such element known as "Ballardium (Bu)" in the periodic table. However, there are elements with a bit of similarity in spellings and pronunciation such as Beryllium (Be) which is found in group 2 (meaning it is an alkali earth metal), Berkelium (Bk) which is an actinide (meaning it is radioactive) and Vanadium (V) which is found in group 5 of the periodic table (meaning it's a transition metal).
Answer:
Velocity is vector quantity. So it needs <em>direction</em> in addoition to <em>speed</em>.
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of its speed and direction of motion.
Answer:
375.2 kJ
Explanation:
- H₂(g) +F₂(g) → 2HF(g) +536kJ
The information the equation above provides lets us know that when 2 mol of hydrogen fluoride (HF) are produced, 536 kJ of energy (as heat) is produced.
We can then <u>state a rule of three</u>:
And <u>solve for X</u>:
- X = 1.4 mol * 536 kJ / 2 mol