The first location to see the partial solar eclipse begin is at 3.58 a.m. EST (08:58 UTC), the greatest point of total solar eclipse occurs at 6 a.m. EST (11:00 UTC) and the last location to see the partial eclipse end is at 8:02 a.m. EST (13:02 UTC) according to Time and Date.
Answer:
T= 1 s
Explanation:
Given that
When x= cm ,T= 1
we know that time period of spring mas system given as

T= Time period
m= mass
k=spring constant
So from above equation we can say that time period of system does not depends on the value of x.
So when x= 10 cm ,still time period will be 1 s.
T= 1 s
<span>3933 watts
At 100 C (boiling point of water), it's density is 0.9584 g/cm^3. The volume of water lost is pi * 12.5^2 * 10 = 4908.738521 cm^3
The mass of water boiled off is 4908.738521 * 0.9584 = 4704.534999 grams.
Rounding to 4 significant figures gives me 4705 grams of water.
The heat of vaporization for water is 2257 J/g. So the total energy applied is
2257 J/g * 4705 g = 10619185 J
Now we need to divide that by how many seconds we've spent boiling water. That would be 45 * 60 = 2700 seconds.
Finally, the rate of heat transfer in Joules per second will be the total number of joules divided by the total number of seconds. So
10619185 J / 2700 s = 3933 J/s = 3933 (kg m^2/s^2)/s = 3933 (kg m^2/s^3)
= 3933 watts</span>
"Dispersion forces" is the one intermolecular force among the following choices given in the question that <span>explains why iodine (I2) is a solid at room temperature. The correct option among all the options that are given in the question is the third option or the penultimate option. I hope that the answer has helped you.</span>