Answer:
Explanation:
Calculating the exit temperature for K = 1.4
The value of
is determined via the expression:

where ;
R = universal gas constant = 
k = constant = 1.4


The derived expression from mass and energy rate balances reduce for the isothermal process of ideal gas is :
------ equation(1)
we can rewrite the above equation as :


where:



Thus, the exit temperature = 402.36 K
The exit pressure is determined by using the relation:



Therefore, the exit pressure is 17.79 bar
Answer:
The bullet's initial speed is 243.21 m/s.
Explanation:
Given that,
Mass of the bullet, 
Mass of the pendulum, 
The center of mass of the pendulum rises a vertical distance of 10 cm.
We need to find the bullet's initial speed if it is assumed that the bullet remains embedded in the pendulum. Let it is v. In this case, the energy of the system remains conserved. The kinetic energy of the bullet gets converted to potential energy for the whole system. So,
V is the speed of the bullet and pendulum at the time of collision
Now using conservation of momentum as :
Put the value of V from equation (1) in above equation as :

So, the bullet's initial speed is 243.21 m/s.
Answer:
Winner wins by 0.969 s
Explanation:
For the Porche:
Given:
Displacement of Porsche s = 400 m
Acceleration of Porsche a = 3.4 m/s^2
From Newton's second equation of motion,
(u = 0 as the car was initially at rest)
Substituting the values into the equation, we have

= 235.29 / 3.4
t = 15.33 s
For the Honda:
Displacement of Honda = 310 m
Acceleration of Honda = 3 m/s^2
Applying Newton's second equation of motion
(u = 0 for same reason)
Substituting the values into the equation, we obtain

= 620 / 3
t = 14.37 s
Hence
The winner (honda) wins by a time interval of = 15.33 - 14.37
=0.969 s
Electrostatic forces between charges depend on the product of
the sizes of the charges, and the distance between them.
We should also mention the item about whether the charges are
both the same sign or opposite signs. That determines whether
the forces will pull them together or push them apart, which is a
pretty significant item.
Answer:
discrete lines are observed by the spectroscope, the emission of the lamp is of the ATOMIC source
Explanation:
Bulbs can emit light in several ways:
* When the emission is carried out by the heating of its filament, the bulb is called incandescent, in general its spectrum is similar to that of a black body, this is a continuous spectrum with a maximum dependent on the fourth power of the temperature of the filament.
* The emission can be by atomic transitions, in this case there is a discrete spectrum formed by the spectral lines of the material that forms the gas of the lamp, in general for the yellow emission the most used materials are mercury and sodium or a mixture of they.
Consequently, as discrete lines are observed by the spectroscope, the emission of the lamp is of the ATOMIC type