Explanation:
In a collision between two objects, both objects experience forces that are equal in magnitude and opposite in direction
Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s
225 = 1/2 (50) (v2)
225 = 25 (v2)
225/25 = v2
9 = v2
√9 = v
v = 3 m/s
The solution for this problem is through this formula:Ø = w1 t + 1/2 ã t^2
where:Ø - angular displacement w1 - initial angular velocity t - time ã - angular acceleration
128 = w1 x 4 + ½ x 4.5 x 5^2 128 = 4w1 + 56.254w1 = -128 + 56.25 4w1 = 71.75w1 = 71.75/4
w1 = 17.94 or 18 rad s^-1
w1 = wo + ãt
w1 - final angular velocity
wo - initial angular velocity
18 = 0 + 4.5t t = 4 s