1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
9

Suppose that a 1000 kg car is traveling at 25 m/s. Its brakes can apply a force of 5000N. What is the minimum distance required

for the car to stop?
Physics
1 answer:
stealth61 [152]3 years ago
6 0
The car's kinetic energy is

                             (1/2) (mass) (speed)²

                       =    (1/2) (1,000 kg) (25 m/s)²

                       =      (500 kg)  (625 m²/s²)

                       =        312,500 joules .

THAT's the work the brakes have to do in order to stop the car.
They have to absorb that kinetic energy and send it somewhere.

Work done by the brakes = (force) x (distance)

             312,500 joules  =  (5,000 N) x (distance)

                     Distance  =  (312,500 joules) / (5,000 N)

                                   =     62.5 meters .

The brakes soak up the car's kinetic energy, turn it to heat,
and let it blow away in the wind.

Too bad you paid good money to buy that energy in gasoline,
and it ended up blowing away in the wind.  You could have 
stayed home, and just opened some windows and let some
money blow away while you ate chips and watched TV.
You might be interested in
Which device provides electrical energy to run an electric circuit
REY [17]

The correct answer is

C. The battery

The battery is a device that provides a potential difference in the circuit, and so an electromotive force (e.m.f.) which pushes the electrons in the circuit from the negative pole towards the positive pole of the battery, so they move through the circuit. Therefore, it provides electrical energy.

8 0
3 years ago
Read 2 more answers
Describe how a metamorphic rock might become a sedimentary rock over time.
andriy [413]
<span>Metamorphic rock undergoes weathering, erosion; the particles are deposited and undergo lithification.</span>
7 0
3 years ago
Dr. Matthews has submitted a proposal to the institutional review board (IRB) of a university. At this university, she intends t
OlgaM077 [116]
The IRB at the university will decide whether her study meets ethical guidelines before it is initiated. The importance of these codes of conduct is to safeguard research participants, the status of psychology and the researchers or psychologists themselves. Moral issues hardly yield a simple, unequivocal, right or wrong answer. It is consequently often a matter of judgment whether the research is justified or not. For instance, it might be that a study roots psychological or physical uneasiness to participants, maybe they agonize pain or maybe even come to solemn harm.
6 0
3 years ago
A sample of monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A). It is warmed at constant volume to
leonid [27]

Answer:

(a) 0.203 moles

(b) 900 K

(c) 900 K

(d) 15 L

(e) A → B, W = 0, Q = Eint = 1,518.91596 J

B → C, W = Q ≈ 1668.69974 J Eint = 0 J

C → A, Q = -2,531.5266 J, W = -1,013.25 J, Eint = -1,518.91596 J

(g) ∑Q = 656.089 J, ∑W =  655.449 J, ∑Eint = 0 J

Explanation:

At point A

The volume of the gas, V₁ = 5.00 L

The pressure of the gas, P₁ = 1 atm

The temperature of the gas, T₁ = 300 K

At point B

The volume of the gas, V₂ = V₁ = 5.00 L

The pressure of the gas, P₂ = 3.00 atm

The temperature of the gas, T₂ = Not given

At point C

The volume of the gas, V₃ = Not given

The pressure of the gas, P₃ = 1 atm

The temperature of the gas, T₂ = T₃ = 300 K

(a) The ideal gas equation is given as follows;

P·V = n·R·T

Where;

P = The pressure of the gas

V = The volume of the gas

n = The number of moles present

R = The universal gas constant = 0.08205 L·atm·mol⁻¹·K⁻¹

n = PV/(R·T)

∴ The number of moles, n = 1 × 5/(0.08205 × 300) ≈ 0.203 moles

The number of moles in the sample, n ≈ 0.203 moles

(b) The process from points A to B is a constant volume process, therefore, we have, by Gay-Lussac's law;

P₁/T₁ = P₂/T₂

∴ T₂ = P₂·T₁/P₁

From which we get;

T₂ = 3.0 atm. × 300 K/(1.00 atm.) = 900 K

The temperature at point B, T₂ = 900 K

(c) The process from points B to C is a constant temperature process, therefore, T₃ = T₂ = 900 K

(d) For a constant temperature process, according to Boyle's law, we have;

P₂·V₂ = P₃·V₃

V₃ = P₂·V₂/P₃

∴ V₃ = 3.00 atm. × 5.00 L/(1.00 atm.) = 15 L

The volume at point C, V₃ = 15 L

(e) The process A → B, which is a constant volume process, can be carried out in a vessel with a fixed volume

The process B → C, which is a constant temperature process, can be carried out in an insulated adjustable vessel

The process C → A, which is a constant pressure process, can be carried out in an adjustable vessel with a fixed amount of force applied to the piston

(f) For A → B, W = 0,

Q = Eint = n·cv·(T₂ - T₁)

Cv for monoatomic gas = 3/2·R

∴ Q = 0.203 moles × 3/2×0.08205 L·atm·mol⁻¹·K⁻¹×(900 K - 300 K) = 1,518.91596 J

Q = Eint = 1,518.91596 J

For B → C, we have a constant temperature process

Q = n·R·T₂·㏑(V₃/V₂)

∴ Q = 0.203 moles × 0.08205 L·atm/(mol·K) × 900 K × ln(15 L/5.00 L) ≈ 1668.69974 J

Eint = 0

Q = W ≈ 1668.69974 J

For C → A, we have a constant pressure process

Q = n·Cp·(T₁ - T₃)

∴ Q = 0.203 moles × (5/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -2,531.5266 J

Q = -2,531.5266 J

W = P·(V₂ - V₁)

∴ W = 1.00 atm × (5.00 L - 15.00 L) = -1,013.25 J

W = -1,013.25 J

Eint = n·Cv·(T₁ - T₃)

Eint = 0.203 moles × (3/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -1,518.91596 J

Eint = -1,518.91596 J

(g) ∑Q = 1,518.91596 J + 1668.69974 J - 2,531.5266 J = 656.089 J

∑W = 0 + 1668.69974 J -1,013.25 J = 655.449 J

∑Eint = 1,518.91596 J + 0 -1,518.91596 J = 0 J

5 0
3 years ago
An 80.0 kg hiker walks a distance of 400.0 m along a road that slopes 5.0 degrees upward, and then stops. What is the hiker's fi
lana66690 [7]
The height difference is found by
\delta H=400sin(5 \°)=34.86m
Then the change in potential energy is
E=mgh=(80.0kg)(9.8 \frac{kgm}{s^2})(34.86)= 27332J
4 0
3 years ago
Other questions:
  • Please help. ill make you BRAINLIEST
    9·1 answer
  • If a car can go from 0 to 60 mi/hr in 8.0 seconds, what would be its final speed after 5.0 seconds if its starting speed were 50
    15·2 answers
  • Blocks A (5.00 kg) and B (10.00 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block A is mov
    12·1 answer
  • Iron oxide reacts with aluminum to give aluminum oxide and iron. What kind of chemical reaction is this?
    7·1 answer
  • An excited atom decays to its ground state and emits a photon of green light. If instead the atom decays to an intermediate stat
    7·1 answer
  • PLS ANSWER FAST WILL GIVE BRAINLYEST!!!!!!!
    11·1 answer
  • Please helpppp meee 20 pts<br> Identify the arrows that show the correct direction of heat transfer.
    5·2 answers
  • How much energy is transferred electrically by a 2000 W cooker in half an hour?
    13·2 answers
  • State that there are positive and negative charges.
    13·2 answers
  • 8 The diagram shows four identical spheres placed between two wooden blocks on a ruler.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!