Sorry, but where are the ‘items’?
Answer:
The answer to your question is Q = 18702.5 J
Explanation:
Data
mass of water = m = 447 g
Cp = 4.184 J/g°C
Temperature 1 = T1 = 25°C
Temperature 2 = T2 = 35°C
Heat = Q = ? Joules
Process
1.- Write the formula to calculate heat
Q = mCp(T2 - T1)
2.- Substitution
Q = (447)(4.184)(35 - 25)
3.- Simplification
Q = (447)(4.184)(10)
4.- Result
Q = 18702.5 J
The answer is burning paper
Answer:
55.9 g KCl.
Explanation:
Hello there!
In this case, according to the definition of molality for the 0.500-molar solution, we need to divide the moles of solute (potassium chloride) over the kilograms of solvent as shown below:

Thus, solving for the moles of solute, we obtain:

Since the density of water is 1 kg/L, we obtain the following moles:

Next, since the molar mass of KCl is 74.5513 g/mol, the mass would be:

Regards!
Answer:
A.
Explanation:
The <u>tertiary structure </u>of proteins is related to the interactions between the amino acids of the <u>primary structure</u>. Thus, these interactions give it a specific three-dimensional configuration which is very sensitive to <u>functionality</u>.
For example, <u>allosteric inhibitions</u> are related to this concept. When the <u>inhibitor</u> changes the tertiary structure of the protein it loses all <u>activity</u> and for the catalysis of the reaction.
Thus, the primary structure (which is related to the specific <u>sequence of amino acids</u>) will determine the tertiary structure since the chain folds will be a consequence of<u> intra-amino acid interactions</u>.