Answer:
High concentration of glutathione should be included in the elution buffer for the given experiment to remove protein from the column.
Explanation:
Affinity chromatography is one of important biochemical technique of chromatography which depends on the affinity of ligand for the receptor.Here the ligand is a protein mixture which act as mobile phase and the receptor is present in the wall of chromatography column act as stationary phase.When the protein mixture is applied on the top of the column the substances present within the protein that have high affinity for the receptor present in the walls of chromatography column binds to the later but rest of the protein pass away through the column.High concentration of ligand is used within an buffer solution to remove the desired protein from the column.
From this point of view it can be stated that in the given question high concentration of glutathione should be used to remove the desired protein from the column.
Answer:
1) False
2) there are equal amounts of rectants and products
Explanation:
1) When dynamic equilibrium is achieved. the rate of forward and backward reaction they are the same, that is to say, two opposite reactions occur at the same rate, keeping the concentrations constant over time. Different to say the rate of the ractions go to zero.
2) A chemical equilibium exists when what is produce in quantities is equal to what reacts.
So the correct answer is the literal (d).
Some acids are capable of drawing water out of an object. This process is called dehydration.
Hope this helped!
Explanation:
The IUPAC system of nomenclature aims to ensure
that every organic compound has a unique, unambiguous name.that the IUPAC name of any compound conveys the structure of that compound to a person familiar with the system.
One way of checking whether the name you have given to an alkane is reasonable is to count the number of carbon atoms implied by the chosen name. For example, if you named a compound 3‑ethyl-4‑methylheptane, you have indicated that the compound contains a total of 10 carbon atoms—seven carbon atoms in the main chain, two carbon atoms in an ethyl group, and one carbon atom in a methyl group. If you were to check the given structure and find 11 carbon atoms, you would know that you had made a mistake. Perhaps the name you should have written was 3‑ethyl-4,4‑dimethylheptane!