Answer:
2.7
Explanation:
The following data were obtained from the question:
Mass (m) of box = 100 Kg
Length (L) of ramp = 4 m
Height (H) of ramp = 1.5 m
Mechanical advantage (MA) of ramp =?
Mechanical advantage of a ramp is simply defined as the ratio of the length of the ramp to the height of the ramp. Mathematically, it is given by:
Mechanical Advantage = Lenght / height
MA= L/H
With the above formula, we can obtain the mechanical advantage of the ramp as follow:
Length (L) of ramp = 4 m
Height (H) of ramp = 1.5 m
Mechanical advantage (MA) of ramp =?
MA = 4/1.5
MA = 2.7
Therefore, the mechanical advantage of the ramp is 2.7
Answer:5250 N
Explanation: ig:iihoop.vince
Yes heating water allows it to dissolve more Sugars because the molecular distance increases and this distance can be covered by more sugar. In the given question, The independent variable would be the temperature of water.
Since to whatever temperature the water boils at the boiling temperature of does not change remains hundred degree. Rest all the variables can vary the weight of the amount of sugar with the variable in the temperature of Boiling of water to remain constant.
Answer:

Explanation:
At some distance from the Earth the force of attraction due to moon is balanced by the force due to Moon
so we will have

now we have


so we will have

Now by energy conservation



Answer:
100 cm³
Explanation:
Use ideal gas law:
PV = nRT
where P is absolute pressure, V is volume, n is number of moles, R is ideal gas constant, and T is absolute temperature.
n and R are constant, so:
P₁V₁/T₁ = P₂V₂/T₂
If we say point 1 is at 40m depth and point 2 is at the surface:
P₂ = 1.013×10⁵ Pa
T₂ = 20°C + 273.15 = 293.15 K
P₁ = ρgh + P₂
P₁ = (1000 kg/m³ × 9.8 m/s² × 40 m) + 1.013×10⁵ Pa
P₁ = 4.933×10⁵ Pa
T₁ = 4.0°C + 273.15 = 277.15 K
V₁ = 20 cm³
Plugging in:
(4.933×10⁵ Pa) (20 cm³) / (277.15 K) = (1.013×10⁵ Pa) V₂ / (293.15 K)
V₂ = 103 cm³
Rounding to 1 sig-fig, the bubble's volume at the surface is 100 cm³.