Answer:
hydroelectric , hydrogen fuel cells , solar power , geothermal , wind power
Explanation:
all of these has little to no waste being produced and have little to no impact on the environment .
Answer:
It is called tempering. Its tensile strength may reduce but it will become more rigid and hard to break compared to the original metal.
Explanation:
( Source : Quora )
Answer:
2445 L
Explanation:
Given:
Pressure = 1.60 atm
Temperature = 298 K
Volume = ?
n = 160 mol
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 08206 L.atm/K.mol
Applying the equation as:
1.60 atm × V = 160 mol × 0.08206 L.atm/K.mol × 298 K
<u>⇒V = 2445.39 L</u>
Answer to four significant digits, Volume = 2445 L
Answer:
Explanation:
In theory, not much of anything. The vast majority of nitrates are water soluble. Aside, not sure what chemistry level you are at but you will probably be asked to know or memorize some solubility rules. This, for lack of a better phrase, Nitrate rule, is near spot on. With one exception—a rare one—all metal cationic nitrates are soluble in water. All of them. So, assuming you are talking about aqueous, water-based solutions of these salts and mixing them together, I expect nothing to occur. Both solutions, I believe are colorless in water and will thus remain so. If you had say a solution of Iron (III) nitrate and copper (II) nitrate, slightly different story. Both are colorful solutions and I would think you might see blending of colors but no reaction; no precipitate will form. You will probably learn about markers of a chemical reaction. One of these is a color change. Note, you should read this as a change of color from what you previously had. Going from red to blue or colorless to colored (or vice versa) is a strong indication of a reaction (e. g. evidence of bond-breaking and bond-formation). The mere mixing of colors does not constitute a chemical reaction.