Answer:
See Explanation
Explanation:
Let us consider the first two reactions, the initial concentration of CO was held constant and the concentration of Hbn was doubled.
2.68 * 10^-3/1.34 * 10^-3 = 6.24 * 10^-4/3.12 * 10^-4
2^1 = 2^1
The rate of reaction is first order with respect to Hbn
Let us consider the third and fourth reactions. The concentration of Hbn is held constant and that of CO was tripled.
1.5 * 10^-3/5 * 10^-4 = 1.872 * 10^-3/6.24 * 10^-4
3^1 = 3^1
The reaction is also first order with respect to CO
b) The overall order of reaction is 1 + 1=2
c) The rate equation is;
Rate = k [CO] [Hbn]
d) 3.12 * 10^-4 = k [5 * 10^-4] [1.34 * 10^-3]
k = 3.12 * 10^-4 /[5 * 10^-4] [1.34 * 10^-3]
k = 3.12 * 10^-4/6.7 * 10^-7
k = 4.7 * 10^2 mmol-1 L s-1
e) The reaction occurs in one step because;
1) The rate law agrees with the experimental data.
2) The sum of the order of reaction of each specie in the rate law gives the overall order of reaction.
Answer:
= 19
ΔG° of the reaction forming glucose 6-phosphate = -7295.06 J
ΔG° of the reaction under cellular conditions = 10817.46 J
Explanation:
Glucose 1-phosphate ⇄ Glucose 6-phosphate
Given that: at equilibrium, 95% glucose 6-phospate is present, that implies that we 5% for glucose 1-phosphate
So, the equilibrium constant
can be calculated as:
![= \frac{[glucose-6-phosphate]}{[glucose-1-[phosphate]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5Bglucose-6-phosphate%5D%7D%7B%5Bglucose-1-%5Bphosphate%5D%7D)


= 19
The formula for calculating ΔG° is shown below as:
ΔG° = - RTinK
ΔG° = - (8.314 Jmol⁻¹ k⁻¹ × 298 k × 1n(19))
ΔG° = 7295.05957 J
ΔG°≅ - 7295.06 J
b)
Given that; the concentration for glucose 1-phosphate = 1.090 x 10⁻² M
the concentration of glucose 6-phosphate is 1.395 x 10⁻⁴ M
Equilibrium constant
can be calculated as:
![= \frac{[glucose-6-phosphate]}{[glucose-1-[phosphate]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5Bglucose-6-phosphate%5D%7D%7B%5Bglucose-1-%5Bphosphate%5D%7D)

0.01279816514 M
0.0127 M
ΔG° = - RTinK
ΔG° = -(8.314*298*In(0.0127)
ΔG° = 10817.45913 J
ΔG° = 10817.46 J
Answer:
Darwin had arrived at a complete theory of evolution by 1839, but it was to be another 20 years before he published his ideas of evolution through natural selection in his epochal book On the Origin of Species by Means of Natural Selection.
Answer:
The picture is the correct answers
Explanation: