NaCl is salt to it is obviously SOLUBLE :)
For the purpose, we will use the equation for determining the dissociation constant from concentration and <span>percent of ionization:
Kd = c </span>× α²
α = √(Kd/c) × 100%
Kd = 6.0×10⁻⁷
c(HA) = 0.1M
α = √(6.0×10⁻⁷/0.1) × 100% = 0.23%
So, in the solution, the acid <span>percent of ionization will be just 0.23%.</span>
Answer:
74.0 g/mol
Explanation:
Step 1: Write the generic neutralization reaction
HA + NaOH ⇒ NaA + H₂O
Step 2: Calculate the reacting moles of NaOH
At the equivalence point, 33.83 mL of 0.115 M NaOH react.
0.03383 L × 0.115 mol/L = 3.89 × 10⁻³ mol
Step 3: Calculate the moles of HA that completely react with 3.89 × 10⁻³ moles of NaOH
The molar ratio of HA to NaOH is 1:1. The reacting moles of HA is 1/1 × 3.89 × 10⁻³ mol = 3.89 × 10⁻³ mol.
Step 4: Calculate the molar mass of the acid
3.89 × 10⁻³ moles of HA have a mass of 0.288 g.
M = 0.288 g / 3.89 × 10⁻³ mol = 74.0 g/mol
Answer:
B
Explanation:
the group number is=valence electrons. element 1 is in group 1 element 18 is in group 8. 1<8
The chemist the count the number of particles (Atoms, Molecules or Formula Unit) in a given number of moles of a substance by using following relationship.
Moles = # of Particles / 6.022 × 10²³
Or,
# of Particles = Moles × 6.022 × 10²³
So, from above relation it is found that 1 mole of any substance contains exactly 6.022 × 10²³ particles. Greater the number of moles greater will be the number of particles.