Answer:
A. 30cm³
Explanation:
Based on the chemical reaction:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
<em>1 mol of calcium carbonate reacts with 2 moles of HCl to produce 1 mol of CO₂</em>
<em />
To solve this question we must convert the mass of each reactant to moles. With the moles we can find limiting reactant and the moles of CO₂ produced. Using PV = nRT we can find the volume of the gas:
<em>Moles CaCO₃ -Molar mass: 100.09g/mol-</em>
1.00g * (1mol / 100.09g) = 9.991x10⁻³ moles
<em>Moles HCl:</em>
50cm³ = 0.0500dm³ * (0.05 mol / dm³) = 2.5x10⁻³ moles
For a complete reaction of 2.5x10⁻³ moles HCl there are necessaries:
2.5x10⁻³ moles HCl * (1mol CaCO₃ / 2mol HCl) = 1.25x10⁻³ moles CaCO₃. As there are 9.991x10⁻³ moles, HCl is limiting reactant.
The moles produced of CO₂ are:
2.5x10⁻³ moles HCl * (1mol CO₂ / 2mol HCl) = 1.25x10⁻³ moles CO₂
Using PV = nRT
<em>Where P is pressure = 1atm assuming STP</em>
<em>V volume in L</em>
<em>n moles = 1.25x10⁻³ moles CO₂</em>
<em>R gas constant = 0.082atmL/molK</em>
<em>T = 273.15K at STP</em>
<em />
V = nRT / P
1.25x10⁻³ moles * 0.082atmL/molK*273.15K / 1atm = V
0.028L = V
28cm³ = V
As 28cm³ ≈ 30cm³
Right option is:
<h3>A. 30cm³</h3>
Answer:
Keep temperature constant and increase the pressure of the reaction. The rate of reaction increases.
Explanation:
First of all, the question is asking us to design an experiment to investigate the effect of pressure on the rate of reaction hence the pressure can not be held constant since it is the variable under investigation. This eliminates the first option.
Secondly, increasing the pressure of the reaction means that particles of the gas collide more frequently leading to a greater number of effective collisions and a consequent increase in the rate of reaction according to the collision theory.
Hence the answer above.
Answer:
p = 260 kilogram/cubic meter
Explanation:
ρ = 
= 
= 0.26 gram/milliliter
= 260 kilogram/cubic meter
Water was bored. He decided to go through the water cycle. He flew in the air as gas, then condensed into water again, and then rolled down into a river, only to find out that he would be stuck doing it forever
. The end