This behavior is called reflection.
Reflection is a change of in direction of the wave when it reaches another medium. Imagine a wave colliding with a glass in a tank of water.
During reflection, some of the initial energy of the wave is lost.
Waves always reflect with at same angle at which it approached the obstacle.
Answer: I don’t know Kiane I’m looking for the anwser too—Gianny
Explanation:
The question is incomplete. The complete question is :
In your job as a mechanical engineer you are designing a flywheel and clutch-plate system. Disk A is made of a lighter material than disk B, and the moment of inertia of disk A about the shaft is one-third that of disk B. The moment of inertia of the shaft is negligible. With the clutch disconnected, A is brought up to an angular speed ?0; B is initially at rest. The accelerating torque is then removed from A, and A is coupled to B. (Ignore bearing friction.) The design specifications allow for a maximum of 2300 J of thermal energy to be developed when the connection is made. What can be the maximum value of the original kinetic energy of disk A so as not to exceed the maximum allowed value of the thermal energy?
Solution :
Let M.I. of disk A = 
So, M.I. of disk B = 
Angular velocity of A = 
So the kinetic energy of the disk A = 
After coupling, the angular velocity of both the disks will be equal to ω.
Angular momentum will be conserved.
So,



Now,






Therefore, the maximum initial K.E. = 3066.67 J
The moon completes its orbit around the Earth in 27.32 days (rounded).
That's NOT the length of the cycle of the moon's phases. The time from
any phase until the next appearance of the same phase is 29.53 days.
This is false. The reaction force can be determined.