Answer:
By repelling water, the tiny water striders stand on the water's surface and the captured airs allows them to float and move easily. so number 2. Surface Tension.
Explanation:
The attraction between water molecules creates tension and a very delicate membrane. Water striders walk on this membrane. ... The legs have tiny hairs that repel water and capture air.
Low clouds
Stratus clouds are uniform grayish clouds that often cover the sky. Usually no precipitation falls from stratus clouds, but they may drizzle. When a thick fog “lifts,” the resulting clouds are low stratus. Nimbostratus clouds form a dark gray, “wet” looking cloudy layer associated with continuously falling rain or snow. They often produce light to moderate precipitation.
Middle clouds
Clouds with the prefix “alto” are middle-level clouds that have bases at 6,500 to 23,000 feet up. Altocumulus clouds are made of water droplets and appear as gray, puffy masses, sometimes rolled out in parallel waves or bands. These clouds on a warm, humid summer morning often mean thunderstorms by late afternoon. Altostratus clouds, gray or blue-gray, are made up of ice crystals and water droplets. They usually cover the sky. In thinner areas of them, the sun may be dimly visible as a round disk. Altostratus clouds often form ahead of storms that produce continuous precipitation.
High clouds
Cirrus clouds are thin, wispy clouds blown by high winds into long streamers. They are considered “high clouds,” forming at more than 20,000 feet. They usually move across the sky from west to east and generally mean fair to pleasant weather. Cirrostratus, thin, sheetlike clouds that often cover the sky, are so thin the sun and moon can be seen through them. Cirrocumulus clouds appear as small, rounded white puffs. Small ripples in the cirrocumulus sometimes resemble the scales of a fish, creating what is sometimes called a “mackerel sky.”
Vertical clouds
Cumulus clouds are puffy and can look like floating cotton. The base of each is often flat and may be only 330 feet above ground. The top has rounded towers. When the top resembles a cauliflower head, it is called “cumulus congestus.” These grow upward and if they continue to grow vertically can develop into a giant cumulonimbus, a thunderstorm cloud, with dark bases no more than 1,000 feet above ground and extending to more than 39,000 feet. Tremendous energy is released by condensation of water vapor in a cumulonimbus. Lightning, thunder and violent tornadoes are associated with them.
It should be <em>Ultraviolet rays </em>because they are moderate in energy.
Answer : The 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Explanation :
Galvanic cell : It is defined as a device which is used for the conversion of the chemical energy produces in a redox reaction into the electrical energy. It is also known as the voltaic cell or electrochemical cell.
In the galvanic cell, the oxidation occurs at an anode which is a negative electrode and the reduction occurs at the cathode which is a positive electrode.
We are taking the value of standard reduction potential form the standard table.
![E^0_{[Ag^{+}/Ag]}=+0.80V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.80V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)
In this cell, the component that has lower standard reduction potential gets oxidized and that is added to the anode electrode. The second forms the cathode electrode.
The balanced two-half reactions will be,
Oxidation half reaction (Anode) : 
Reduction half reaction (Cathode) : 
Thus the overall reaction will be,

From this we conclude that, 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Hence, the 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.