Answer:
The Nucleus...
it perform many activities and stores DNA in a cell.
Answer:
FeCl₃
Explanation:
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7moles 9moles
A simple way to determine which reagent is the limiting reactant is to convert all given data to moles then divide by the respective coefficients of the balanced equation. The smaller value will be the limiting reactant.
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7/4 = 1.75* 9/3 = 3
*Smaller value => FeCl₃ is limiting reactant.
NOTE: However, when working problems, one must use original mole values given.
Answer:
a)
,
, b)
, 
Explanation:
a) The ideal gas is experimenting an isocoric process and the following relationship is used:

Final temperature is cleared from this expression:


The number of moles of the ideal gas is:



The final temperature is:


The final pressure is:



b) The ideal gas is experimenting an isobaric process and the following relationship is used:

Final temperature is cleared from this expression:




The final volume is:



<u>Answer:</u> The pH of the buffer is 5.25
<u>Explanation:</u>
Let the volume of buffer solution be V
We know that:

To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[\text{conjugate base}]}{[acid]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7Bconjugate%20base%7D%5D%7D%7B%5Bacid%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of weak acid = 4.90
![[\text{conjugate base}]=\frac{2.25}{V}](https://tex.z-dn.net/?f=%5B%5Ctext%7Bconjugate%20base%7D%5D%3D%5Cfrac%7B2.25%7D%7BV%7D)
![[acid]=\frac{1.00}{V}](https://tex.z-dn.net/?f=%5Bacid%5D%3D%5Cfrac%7B1.00%7D%7BV%7D)
pH = ?
Putting values in above equation, we get:

Hence, the pH of the buffer is 5.25